JULY 1961 NATIONAL WIND-TUNNEL SUMMARY REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U. S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 | ÷ | • | | | |---|---|--|--| ÷ | • | | | |---|---|--|--| # CONTENTS | | | | | | | | | | | | | | | | | Page | |------|---------|---------|---------|--------|-------|------|----|-----|---|---|---|---|---|---|---|-----------| | 1. | Introd | luction | | | • | • | • | • | • | • | • | • | • | • | • | v | | 2. | Polici | les and | Proce | dures | • | • | • | | • | • | • | • | • | • | • | vi | | | 2.1 / | | | | • | • | • | • | • | • | • | • | • | • | • | vi | | | 2.2 | vevy . | • • | • • | • | • | • | • | • | • | • | • | • | • | • | vi
vi | | | | Air For | | | | | | • | | | | | • | • | • | vi
vii | | | 2.4 | MADA . | • • | • • | • | • | • | • | • | • | • | • | • | • | • | A T-T- | | Inde | ex of W | Vind Tu | nnels | by Lo | cati | on. | • | • | • | • | • | ٠ | • | • | • | 19 | | Abbı | reviati | Lons . | | | • | • | • | • | • | • | • | • | • | • | • | 25 | | | | | | | | Ţ | ab | les | - | | | | | | | | | I. | Subs | sonic W | ind To | nnels | • | • | • | • | • | • | • | • | • | • | • | 1 | | II. | Smal | Ll Tran | sonic | Wind | Tunr | els | • | • | • | • | • | • | • | • | • | 5 | | III | Larg | ge Tran | sonic | Wind | Tunr | els | • | • | • | • | • | • | • | • | • | 7 | | IV. | Smal | Ll Supe | rsonic | Wind | Tur | nel | s. | • | • | • | • | • | • | • | • | 9 | | v. | Larg | ge Supe | rsonic | Wind | Tur | nel | s. | • | • | • | • | • | • | • | • | 12 | | VI. | Sma. | Ll Hype | rsonic | : Wind | Tur | mel | s. | • | • | • | • | • | • | • | • | 14 | | TTT | Tom | ra Hima | maoni e | . Wind | Three | Lagr | a | | | | | | | | | 17 | | ÷ | • | | | |---|---|--|--| #### 1. INTRODUCTION This summary, prepared jointly by the National Aeronautics and Space Administration and the Department of Defense, supersedes the survey of wind tunnels contained in Characteristics of Major United States Transonic and Supersonic Wind Tunnels and Air Breathing Engine Test Facilities, dated 3 October 1956. Its purpose is to provide a ready reference on current wind-tunnel facilities for governmental, industrial and institutional organizations that employ wind tunnels and require this type of information. The tables contain data on major wind tunnels in the United States owned by the Department of Defense, the National Aeronautics and Space Administration (NASA), industrial organizations and universities. The information was obtained from questionnaires completed and returned by the operators of the wind tunnels. Included are facilities that are now in operation or being constructed and those that are currently authorized. The wind tunnels reported in this survey are classified according to their size and speed range as follows: Subsonic: Below Mach 1, test section 4 feet minimum Transonic -- small: Mach 0.8 to 1.2, test section 12 to 24 inches large: Mach 0.8 to 1.2, test section 24 inches minimum Supersonic -- small: Mach 1 to 5, test section 12 to 24 inches large: Mach 1 to 5, test section 24 inches minimum Hypersonic--small: Over Mach 5, test section 12 to 24 inches large: Over Mach 5, test section 24 inches minimum Because their speed ranges overlap categories, some tunnels appear in more than one table. ## 2. POLICIES AND PROCEDURES The policies and procedures applicable to the use of wind tunnels vary widely among the owners and operators. Current policies and procedures affecting government-owned facilities (Army, Navy, Air Force, NASA) are outlined in the following paragraphs. #### 2.1 Army. Wind tunnels owned by the Department of the Army are available for use only by other government agencies and their contractors. All requests for wind-tunnel testing should be submitted to the Research Branch, Research and Development Division, Chief of Ordnance (ORDTB), which allocates wind-tunnel time. Nongovernmental activities should request wind-tunnel time through their government contracting agencies. To cover costs, a transfer of funds to the Ordnance Corps by the interested government contracting agency is required. After tests are authorized and the necessary funding transactions are completed, the contractor and the wind-tunnel installation are authorized to communicate directly with each other regarding technical details of tests and arrangements for observers. #### 2.2 Navy. Wind tunnels owned by the Department of the Navy are available for use primarily by government agencies and their contractors, but, subject to pertinent regulations and time limitations, proprietary testing is permissible. Detailed procedures for requesting wind-tunnel time may be obtained from the wind-tunnel installation concerned. Before formally requesting time, the requestor should consult with the laboratory involved. Prior to the test, the requestor shall arrange appropriate financing with the laboratory to cover the costs. ### 2.3 Air Force. To obtain testing time in wind tunnels owned by the Department of the Air Force, the following procedures should be observed: 2.3.1 Air Force Contractors: Air Force contractors should send their requests directly through the appropriate Air Force Systems Command (AFSC) system or the project officer responsible for monitoring the contract work. 2.3.2 Army and Navy Contractors: Army and Navy contractors should submit all requests through the responsible Army or Navy agency, which then should forward the approved requests to the appropriate AFSC division or center. If the requestor cannot readily identify the proper AFSC agency to receive his request, he should direct it to Headquarters, Air Force Systems Command Director of Operations (SCRO) Andrews Air Force Base Washington 25, D. C. 2.3.3 Contractors and Academic Institutions Not Operating Under Defense Contracts: All requests of these organizations should be directed to the appropriate AFSC division or center. If the proper AFSC agency to receive the request is not readily discernible, the requestor should submit it to Headquarters, Air Force Systems Command Director of Operations (SCRO) Andrews Air Force Base Washington 25, D. C. #### 2.4 NASA. Testing time in wind tunnels owned by the National Aeronautics and Space Administration may be made available for two types of projects: (1) government projects—tests under projects that are conducted under contract with, supported by letter of intent from, or of vital concern to, a government agency; (2) company projects—proprietary tests conducted on a fee basis, primarily in the NASA Unitary Wind Tunnels. It is NASA policy not to compete with commercially available wind tunnels. With the exception of the Unitary Wind Tunnels, NASA tunnels may be assigned to company projects only in unusual cases. Company projects are conducted in the NASA Unitary Wind Tunnels when they are clearly in the national interest. The first step in obtaining testing time is to confer with the staff of the NASA activity involved to review the nature of the required tests and determine whether it is possible to obtain testing time in the desired wind tunnel. After the conference, the government agency or company requiring wind-tunnel time should formally submit its request as follows: (1) Langley, Lewis and Ames Research Centers (government and company projects)--Address all requests to: Director, Office of Advanced Research Programs National Aeronautics and Space Administration Attention: Code RTF Washington 25, D. C. (2) Marshall Space Flight Center (government projects only)--All requests for tests in the one available MSFC wind tunnel should be addressed to: Director George C. Marshall Space Flight Center Huntsville, Alabama (3) Jet Propulsion Laboratory (government and company projects)--Blocks of testing time have been allocated in the two JPL wind tunnels for use by the Army and the Air Force. Requests for portions of this time should be addressed to the Army or Air Force member of the NASA Aircraft and Missiles Projects Allocation and Priority Group, through the appropriate project offices in the Army or Air Force. Requests for the use of JPL wind tunnels for other government projects and for company projects should be addressed to: Director, Office of Space Flight Programs National Aeronautics and Space
Administration Attention: Code DL Washington 25, D. C. Requests from military contractors for the use of NASA wind tunnels in connection with government projects are coordinated by the NASA Aircraft and Missiles Projects Allocation and Priority Group. All military contractors or agencies should submit requests for the use of NASA wind tunnels in accordance with the procedures established by the interested Military Department. | Rem | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | |----------|--|--------------------------|---|-------------------------------|---|---------------------------|-------------------------------| | - | 8 x 10 Ft Subsonic Wind Tunnel No. 1
Aerodynamics Laboratory
David Taylor Model Basin
Washington 7, D. C. | Buveps
DTRB | Technical Director
Aerodynamics Laboratory
David Taylor Model Basin | Research,
devel.,
eval. | 8 x 10 x 14 ft:
single return. closed circuit,
atmospheric test section:
provision for simulating both
propeller and jet power. | 0 - 190 mph | Continuous | | N | 8 x 10 Ft Subsonic Wind Turnel No. 2 Aerodynamics Leboratory David Taylor Model Basin Mashington 7, D. C. | Bulveps
DTMB | Technical Director
Aerodynamics Laboratory
David Taylor Model Basin | Research, devel., eval. | Research, Same as above.
devel.,
eval. | 0 - 165 mph | Continuous | | m | 6 Ft Wind Tunnel
Mational Bureau of Standards
Mashington 25, D. C. | D/Сомметсе
D/Сомметсе | Dr. G. B. Schubauer
Mational Bureau of
Standards | Eval | 6 ft octagon, 12½ ft long | 0 - 175 mph | Con tinuous | | -7 | 1½ Ft Low Turbulence Wind Tunnel
National Bureau of Standards
Mashington 25, D. C. | D/Сомметсе
D/Сомметсе | Dr. G. B. Schubauer
Mational Bureau of
Standards | Resear ch | կ∮ ft octagon. 19 ft long | 0 - 70 mph | Con tinuou s | | w | Full Scale Wind Tunnel
Aero-Space Hechanics Division
NASA Langley Research Center
Langley Field, Virginia | NASA
NASA | NASA Director
NASA Langley Research
Center | Research,
devel. | 30 x 60 ft, semicircular sides.
56 ft long, open throat | 0 - 110 mph | Continuous | | 9 | 20 Ft Free Spinning Tunnel
Aero-Space Hechanics Division
NASA Langley Research Center
Langley Field, Virginia | NASA
NASA | NASA Director
NASA Langloy Research
Center | Research.
devel.,
eval. | 20 ft diam, 12-sided | 0 - 60 mph | Continuous | | - | 300 mph, 7 x 10 Ft Turnel
Full-Scale Research Division
MASA Langley Research Center
Langley Field, Virginia | NASA
NASA | NASA Director
NASA Langlay Research
Center | Research | 7 x 10 ft
and
45.75 x 17 ft | 0 - 300 mph
0 - 70 mph | Continuous
Continuous | | © | 12 Ft Pressure Wind Turnel
NASA Ames Research Center
Hoffett Field, Callfornia | NASA | MASA Director
MASA Ames Research
Center | Research | 12 ft diam, h ft wide,
flat fairings on h sides | Mach 0 - 1.0 | Continuous | | ٥ | ho x 60 Ft Wind Tunnel
NASA Ames Research Center
Noffett Field, California | NASA
NASA | MASA Director
NASA Ames Research
Center | Research | No x 80 ft.
closed test section | 0 – 230 mph | Continuous | | 9 | 7 x 10 Ft Wind Tunnels Nos. 1 and 2
HASA Ames Research Center
Mcffett Field, California | NASA
Wasa | NASA Director
NASA Amem Research
Center | Research | 7 × 10 ft | 0 - 280 mph | Con tinuous | | п | 6 x 9 Ft Subsonic Icing Wind Turnel
BASA Lewis Research Center
Cleveland 35, Ohio | NASA
NASA | NASA Director
NASA Lewie Research
Gentef | Devel | 6 x 9 x 20 ft. | Mach 0 - 0.45 | Con tinuous | | | - | _ | - | | • | • | | E LS Table I | _ | l | | | | | | | | | | | |--------------------------------|--------------------------------|--------------------------|-------------|-------------|-----------------------|--------------------------|---|-------------------------|---|--|---| | Rem | - | ~ | 6 | -3 | 20 | • | - | 8 | • | 2 | # | | Limitations and comments | ; | 1 | ı | ı | 1 | ŀ | Entrance cone used as low-speed test section for V/STOL research. | Low-turbulence flow. | Accommodates operating
turbojets and full-scale
propellers. | Both facilities are on
stand-by basis; no perma-
nent staff is assigned. | Water sprays of controlled
droplet also and air
temperature control.
Facility is on stend-by
basis for use only as
required by outside users | | Available
to others | Yes | Yes | Yes | Yes | Yes | Yes | Tes | Yes | Yes | Yes
(limited) | K e | | Dynamic pressure
(lb/sq ft) | 06 = 0 | 0 - 0 | 0 - 75 | 0 - 12 | 0 - 30 | 0 - 10 | 0 - 200 | 20 - 500 | 0 - 138 | 0 - 210 | 0 - 250 | | Reynolds
no./ft | 0 - 1.77x10 ⁶ | 0 - 1.54x10 ⁶ | 0 - 1.5x106 | 0 - 0.6x106 | 0 - 1x10 ⁶ | 0 - 0.60x10 ⁶ | 0 - 2×106
0 - 0.7×10 ⁶ | 0.5 - 9x10 ⁶ | 0 - 2.1x10 ⁶ | 0 - 2.56x10 ⁶ | 0 - 3.3x10 ⁶ | | Stagnation
temp. (0R) | 576 (with
external cooling) | Same as above. | Ambient | Amblent | Ambient | Ambient | Ambient +20
Ambient +20 | 625 | Ambient | Ambien t | ly56 - 540
(refrigerated
air flow) | | Stagnation
press. (atmos.) | ď | 1 | 1 | a | 1 - 1.01 | Ħ | | 0.136 - 5.0 | 1 | Т | r | | Running
time | ł | l | ŀ | ŀ | ŀ | į | 1 1 | ļ | ı | ! | ŀ |) -- (| Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | |------|--|------------------------------------|--|-------------------------------|---|--|-------------------------------| | 12 | Subsonic Wind Tunnel
United Aircraft Corporation Research | United Aircraft
United Aircraft | | Research.
devel | Octagonal, 8 ft across
flats, 14 ft long | 0 - 650 трћ | Continuous | | | Indoratorites
400 Main Street
East Hartford 8, Connecticut | | United Aircraft Corp.
Research Laboratories | eval. | Octagonal, 18 ft across
filats, 34 ft long | 0 - 200 mph | Continuous | | ដ | 4 x 6 Ft Subsonic Wind Tunnel
United Aircraft Corporation Research
Imboratories
HoO Main Street
Sast Hartford 8, Connecticut | United Aircraft
United Aircraft | Sane ав above | Research
devel.,
eval | h x 6 x 8 ft | 0 - 110 mph | Con tinuous | | 큐 | 7 x 10 Ft Low Speed Wind Tunnel
Northrop Corporation, Norair Division
1001 Broadway
Hawthorne, California | Northrop
Northrop | Chief, Aeronautical and
Propulsion Sciences
Group
Northrop Corporation
Norals Division | Research. devel. | 7 x 10 x 20 ft. with 1-ft
chord fillets | 0 - 300 mph | Con ti muous | | 25 | Low Speed Wind Tunnel
McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 66, Missouri | McDonnell
McDonnell | Robert E. Rothert, Chief
Gas Dynamics Laboratory
McDonnell Aircraft Corp. | Devel.,
eval. | 8.5 x 12 x 18 ft | 0 - 240 արհ | Continuous | | 16 | Polysonic Wind Tunnel
McDonnell Aircraft Corporation
P. O. Box 516
St. Louis 66, Missouri | McDonnell
McDonnell | Sane as above | Devel., seval. | Subsonic: h x h x 6 ft Transonic: h x h x 9 ft Supersonic: h x h x 6 ft | Mach 0.5 - 1
(Will operate up
to Mach 5) | Cont in uou s | | 11 | frisonic Wind Turnel
North American Aviation, Inc.
El Segundo, California | N. A. A. | Laboratory Director Los Angeles Div. North American International Airport Los Angeles 45, Calif. | Research, devel.,
eval. | 7 x 7 x 23 £t. | Mach 0.2 - 1
(Will operate up
to Mach 3 \$) | Continuous | | 91 | ow Speed Tunnel
Korth American Aviation, Inc.
International Airport
Los Angeles 15, California | N.A.A.
N.A.A. | Same as above. | Research devel | 7.75 x 11 x 12 ft, corner
fillet radii 10.625 in. | 0 - 220 mph | Continuous | | 13 | 7 x 10 Ft Subsonic Wind Tunnel
Grumman Aircraft Engineering Corporation
Bethpage, New York | Grunman
Grunman | W. J. Cander
Grumman Aircraft
Engine ering Corp. | Research,
level .
eval. | 7 × 10 ft | 140 mph | Continuous | | 50 | Low Speed Wind Tunnel Convair Division Jeneral Dynamics Corporation F.O. Box 1950 San Diego 12, California | Convair
Convair | J. H. Struthers
Convair Division
General Dynamics Corp.
Mail Zone 6-166 | Research,
devel. | 8 x 12 x 15 tt,
18-in. corner fillets | 40 - 300 mph | Continuous | | ฉ | Low Speed Wind Tunnel (Building 107)
I.S. Naval Weapons Industrial Neserve Plant
Sallas 22, Texas | Bulleps
Vought Aero-
nautics | R. C. McWherter
Vought,Aeronautics
Box 5907
Dallas 22, Texas | Research, Tievel., eval. | 7 x 10 x 16 ft | 0 – 240 արհ | Continuous | | 22 | bubsonic Wind Tunnel Aerodynamics Laboratory Corth Aerotam Aviation, Inc. Columbus Division Columbus, Onio | | M. E. Stevens, Chief Aerodynamics Laboratory Forth American Aviation Inc. Columbus Div. | Research.
devel
eval. | (7 × 10 × 15 ft
(14 × 16 × 15 ft | liO - 300 mph | Continuous
Con timous | | | | # 1 % | | | |
 - | Table I (continued) | T Am | 21 | | £1 | # | 3 2 | 91 | 11 | 18 | 82 | 02 | ಸ | 8 | | |-----------------------------|--|---|---|--|-----------------------|--|---|-----------------------|---------|----------------------|-------------------------|-----------|----------| | Limitations | Small turbojets and rock-
ets, 750 hp, 0 - 400 cps
variable frammer roces. | 10 lb/sec, 400 psi air, vacuum lines for induction tests. | Auxiliary power for small helicopters, rotors and propellers. High presente air or vacum available for BLG. | Scheduled project will keep tunnel at inil 1-shift operation for next 2 years. | ı | ŀ | Has aubscnic, transcnic
and supersonic capabil-
ities | i | ı | ľ | 1 | 1 | | | Available
to others | X ex | | Yes | Yes | Yes | Yes | Yes | Yes | Mo | ,
Kes | Yes | Yes | | | Dynamic pressure (tb/sq ft) | {069 - 0 | 0 - 80 | 0 - 30 | 0 - 200 | 10 - 100 | 1500 - 6500 | 200 - 3100 | 0 - 120 | 50 | 2 - 200 | 0 - 150 | 4 - 212 } | 0.3 - 17 | | Reynolds
no./ft | 0 - 4.75x106 | 0 - 1.8x10 ⁶ | 0 - 0.82x10 ⁶ | 0 - 2x10 ⁶ | 2.3x105 to
2.3x106 | 7.5x10 ⁶ , to
32.5x10 ⁶ | 2x106 to
17x10 ⁶ | 0 - 2x10 ⁶ | 1.3x106 | 2.4x109 to
2.5x10 | 0 - 2.2x10 ⁶ | 2.7x106 | 0.84x106 | | Stagnation
temp. (0R) | 620 | Ambient | 620 | 580 | 015 | 810 | 530 | 570 | Ambient | Ambient | 519 | Ambien t | Ambient | | Stagnation press. (atmos.) | г | Ħ | r. | 1.0 - 1.1 | | 1.0 - 27.2 | 89
1
El | , 1 | - | ~ 1 | - | 7 | ret . | | Running | 1 | * | ł | I | l | 1 | I | ; | 1 | ŀ | ŀ | ŧ | ı | | Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | - | |---------------|--|---|---|---|---|--------------|-------------------------------|----------| | ಆ ಫ್ರಾಫ್ | Galcit 10 Ft Wind Tunnel
Guggenbeim Aeromantical Laboratory
Pasadona b, Galifornia | Cal. Tech. | Prof. Winston Royce
Guggenheim Aeronautical
Laboratory | Research, | 10 ft diam. 10 ft long,
closed section | 0 - 175 mph | Continuous | | | | Low Speed Wind Tunnel
University of Kansas
Lawrence, Kansas | U. of Kansas | Aeronautical Engineering Department U. of Kansas | Instruc-
tion | 5 ft dlem | 10 - 75 mph | Conti nuous | - | | | Low Speed Wind Tunnel
University of Maryland
College Park, Maryland | U. of Maryland
U. of Maryland | Donald L. Gross Wind Tunnel Operations Department U. of Maryland | Research,
devel.,
eval. | Research, 7.75 x 11 ft, rectangular devel., | 0 – 220 mph | Continuous | | | < x O | Aeroelastic and Structures Research
Laboratory Flutter Tunnel (Low Speed)
Massachusetts Institute of Technology
Cambridge 39, Massachusetts | H. I. T. | A. S. Richardson
Room [11-219
M.I.T. | Instruc-
tion,
research | 7.5 x 5 ft, rectangular, closed return | n - 90 mph | Continuous | <u> </u> | | 3 X O | Wright Brothers Wind Tunnel Facility
(Low Speed)
Massachusetts Institute of Technology
Cambridge 39, Massachusette | H. I. T. | Frof. Joseph Bicknell
Bullding 17
M.I.T. | Instruc-
tion,
eval. | 10 x 7.5 x 15 ft, elliptical variable density, 0.25 to 4 atmos, absolute | 0 - 140 mph | Continuous | | | ∺ => < | Low Turbulence Wind Tunnel
University of Michigan
Ann Arbor, Michigan | U. of Michigan
U. of Michigan | Frof. A. M. Kuethe
Aeronautical Engineering
U. of Michigan | Instruc-
tion,
research | S x 7 ft | 0 - 200 мрћ | Continuous | | | - 4 - M O | 7 x 10 Ft Low Speed Wind Tunnel
Aeronautical Laboratories
Taxas AAM College
Essterwood Airport
College Station, Texas | Texas A&H
Texas Engineering
Experiment
Station | F. C. Hall, Wind Tunnel Hanager Aeronautical Laboratories Box 3 F.E. College Station, Texas | Research,
devel.,
eval. | 7 x 10 x 12.3 ft | 0 - 200 mph | Continuous | | | 12 CJ | F. K. Kirsten Memorial Wind Tunnel
University of Washington
Seattle 5, Washington | U. of Washington | w. H. Rae, Jr.
Supervisor, UMAL
U. of Washington | Instruc-
tion,
research,
devel. | 8 x 12 x 10 ft, rectangular,
with corner fillets | 250 mph | Continuous | | | ~ D D 3 | 7 x 10 Ft Wind Turnel
University of Wichita
Department of Aeronautical Engineering
Wichita, Kaness | U. of Wichita | dead, Department of
Asronautical Engineering
U. of Wichita | Instruc-
tion,
research,
devel. | 7 x 10 x 12 ft,
chamfered corners;
auxiliary throat for
2-dimensional test, h x 7 ft | 2 ~ 200 mph | Continuous | | | ~ D X C | 7 x 10 Ft Wind Tunnel
University of Detroit
HcWitchols Road Campus
Detroit 21, Michigan | U. of Detroit
U. of Detroit | J. of Detroit Research Institute of Science and Engineering 4001 W. McMichols Read Detroit 21, Michigan | Instruc-
tion,
research,
devel. | 7 x 10 ft, octagonal,
12 ft long | 15 - 175 mph | Continuous | | | | 9 Ft Wind Tunnal
Danial Ouggenheim School of Aeronautics
Georgia Institute of Technology
Atlanta 13, Georgia | Georgia Tech.
Georgia Tech. | John J. Harper
Daniel Guggenheim School
of Aeronautics
Georgie Institute of
Technology | Instruc-
tion,
research,
level., | 9 ft diam, 11 ft long | 3 - 150 mph | Continuous | | | ವಾದಿದ್ದ | i x i Ft Wind Tunnel
University of Cincinnati
Department of Aeronautical Engineering
Cincinnati 21, Ohio | U. of Cincinnati | R.P. Harrington J. of Cincinnati Dept. of Aeronautical Engineering | instruc-
tion,
research | u z u z 6 ft, closed throat | | ntinuous | | | | | | 3. 4 | • | • | (n) | -13 | | | _ | |-----| | | | 45 | | | | | | | | | | | | === | | = | | = | | ~ | | • | | ບ | | | | _ | | | | - | | | | • | | | | = | | - | | ~* | | | | | | (nan | Item | 83 | ₹2 | સ | 92 | 23 | 58 | 82 | <u>R</u> | ц
К | 83 | 8 | 2 | | |------------------|-----------------|-------------|---|--------------------------|-------------|-------------|--|------------------------|----------------|-------------|-----|-------------|--------------|-----| | Limitations 1 | and comments | ſ | To be replaced by new,
low-turbulence turnel | with droad 3 x 3 it. | ı | ł | Gust similation; very
low turbulence. | ı | ı | l | ı | 1 | ţ | | | Available | to others | Yes | Yes | Ies | | Yes | Yes | Yes | Yes | Yes | Ĭes | Yes | . . | | | Dynamic pressure | (1b/sq ft) | 09 - 0 | 15 | 0 - 123.8 | 50 | 50 - 60 | 0 - 100 | 0 - 100 | 1 - 160 | 0 - 102.5 | ţ | 75 - 0 | 0 - 22 | 3-6 | | Reynolds | no./ft | 0 - 1.3×106 | 0.50x106 | 0 = 2.06x10 ⁶ | 0 - 0.8x106 | 1.2 - 3x106 |) - 1x10 ⁶ | 0 - 19x10 ⁵ | 0 - 1.8x106 |) - 1.7x106 | 1 | 0 - 1,6×106 | 0.75x106 | | | Stagnation | temp. (OR) | 1460 | Ambient | 530 | 510 - 560 | 580 | . 009 | 500 маж. | Not applicable | 585 | 1 | 590 | Ambient | | | Stagnation | press. (atmos.) | н | - | 0 - 8.5 | 1,2 - 2,8 | 0.5 - 1 | ;-4 | - | 1.07 | Ħ | į | Ħ | 0 - 1.5 | . — | | Running | time | ŀ | l | 1 | ı | I | ì | ŀ | l | ŀ | 1 | I | ł | - | | Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | |------|---|------------------------------|--|-------------------------------|--|-------------|---------------------------------------| | × | Atmospheric Tunnel
Guggenheim Aeronautical Laboratory
Stanford University
Stanford, California | Stanford U. | Prof. E. G. Reid
Guggenheim Aeronautical
Laboratory
Stanford University | Instruc-
tion,
research | 7.5 ft diam, 4.5 ft long,
free jet | 0 - 90 mph | Continuous | | Ж | k x 8 Ft Three Dimensional Tunnel
The James Forrestal Research Center
Princeton University
Department of Aeronautical Engineering
Princeton, New Jeresy | Princeton U.
Princeton U. | A. A. Mikolsky
The James Forrestal
Research Center
Princeton University | Research | 4 x 8 ft | 0 - 50 mph | Continuous | | × | h x 5 Ft Three Dimensional Tunnel The James Forrestal Research Center Driveton University Department of Aeronautical Engineering Princeton, New Jersey | Princeton U. | Same as above | tion, research | 7 × × 4 | 0 - 150 mph | Continuous | | | | b' - h | | | Angel Carlo | — | , , , , , , , , , , , , , , , , , , , | Table I (continued) | Hem | ж | ж | 37 | • | |--------------------------------|----------|---------|---------|---------| | Limitations and comments | 1 | I | ; | | | Available
to others | Yes | Ĭ
ee | Ĭ
S | - | | Dynamic pressure
(1b/sq (1) | 0 - 20.5 | ı | ı | . d. e. | | Reynolds
no./ft | i | 1 | ı | | | Stagnation
temp. (0R) | Ambient | Ambient | Ambient | | | Stagnation
press. (atmos.) | 1 | T | 7 | | | Running | | 1 | ı | • | | Intermittent
or continuous | nons | Intermittent | enon: | \$ non |
Intermittent | s non | Intermittent | gnon | none | Intermittent | Intermittent | |--|--|--|--|---|---|--|---|--|--|---|--| | Inter
or cor | Continuous | Intera | Continuous | Continuous | Intern | Continuous | Intern | Continuous | Continuous | Intern | Interm | | Speed range | Mach 0.5 - 1.6 | 3 nossles: Mach 0.2 - 0.85 0.2 - 1.3 1.2 - 5 | Запе ан аbove | Mach 0.55 - 1.5 | Mach 0.4 - 3 | 0 - Mach 1.2 | Mach 0.5 - 1.h | Mach 0.5 - 1.1 | 0 - Mach 1.h | Hach 0.4 - 5 | Mach 0.5 - 1.5
perous walls | | Test section:
Dimensions and features | Research, 16.43 x 16 in.
devel.,
eval. | Nesearch, 16 x 16 in., fixed block eval., devel. | Research, 16 x 16 in., fixed block eval., noxxle, adjustable diffuser devel. | 12 x 12 x 37.5 in. | 12 x 12 x 36 in.,
6% perforated walls | 2h x 2h in. | Octagonal,
20 in. between flaps | 12 x 35 in., solid side
Walls, floor and ceiling
perforated | 2 x 2 x 5 ft,
all k walls porous | 14 × 14 1n. | 17 x 17 in. square,
transonic | | Use | Research,
devel.,
eval. | Research,
sval.,
devel. | Research,
eval.,
devel. | Devel.,
eval. | Research,
devel. | Research | Research,
devel.,
eval. | Research | Research | Research,
devel. | Research,
devel.,
admin. | | Contact | R. H. Peterson
Laboratory Officer,
Code 54,00 | Dr. R. Kenneth Lobb
Asrodynamics Department
NOL, White Oak | Dr. R. Kenneth Lobb
Aerodynamics Department
NOL, White Oak | G. Chester Furlong
AEDC (AEOT)
Arnold AF Station | R. C. Hayden,
Supervisor
Exp. Aerodramics
Div. 7132
Sandia Corp. | MASA Director
NASA Langley Research
Center | MASA Director
WASA Langley Research
Center | MASA Director
MASA Ames Research Center | NASA Director
NASA Ames Research Center | T. G. Reed
MASA Marshall Space
Flight Center | George D. Dickie
Head, Supersonic Tunnels
United Aircraft Corp. | | Owner
Operator | Bukeps
U. of Southern
California
Engineering
Center | Buleps
NGL, White Oak | Buweps
WOL, White Oak | ARO, Inc. | Sandia
Sandia | MASA | MASA | HASA | MASA
Wasa | MASA
Wasa | United Aircraft
United Aircraft | | Name and location | Transcoric Wind Tunnel Aerodynamic Test Laboratory U. S. Naval Hissile Center Point Mugu, California | Supersonic Tunnel No. 1
Naval Ordnance Laboratory, White Oak
Silver Spring, Maryland | Supersonic Tunnel No. 2
Naval Ordnance Laboratory, White Oak
Silver Spring, Maryland | fransonic Model Tunnel
Propulation Wind Tunnel
Arnold Engineering Development Center
Arnold Air Force Station, Tennessee | 12 Inch Transcric Tunnel (SCARF III)
Sandla Bers
Sandla Bers
Albuquerque, New Moxico | 2 Ft Transonic Aeroelssticity Tunel
Dynamic Loads Division
NASA Langley Research Center
Langley Field, Virginia | 22 Inch Transonic Tunnel (Induction)
Full-Scale Research Division
NASA Langley Research Center
Langley Fleld, Virginia | 1 x 3.5 Ft Transonic Wind Turnel
MASA Ames Research Center
Moffett Field, California | 2 x 2 Ft Transonic Wind Tunnel
NASA Ames Research Center
Moffett Field, Callfornie | lų x lų inch Trisonic Wind Tunnel
NASA Marshall Space Flight Center
Buntsville, Alabana | 17 Inch Blowdown Tunnel United Afroraft Corporation Research Laboratories Laboratories | | Item | A | 0) <u>2</u> (3) | w = 0 | 3 | <i>y</i> | 9 | ~ ~ ~ | <u>пяк</u>
Ф | 0 X X | 10 | 1 | FUNNELS Table II | Rem | - | C) | ~ | 4 | 1 0 | • | 1 | æ | • | 01 | ជ | | |---------------------------------------|-------------------------------|----------------------------|-----------------------------------|-----------------------|--|---|-----------------------|---|---------------------------------------|--|-------------------------------|-----| | Limitations and comments | 1 | ı | ı | ŀ | Top and bottom walls of
test section converge or
diverge. Adjustable
elector flaps provide
plenum chamber suction. | Used as a vacuum vessel
for another tunnel; is
available only on limited
basis (Freen or air). | On stand-by basis. | On stand-by basis; no parmement staff attached. | Being converted to
stand-by basis. | Special test section allows cold rocket base flow testing. | : | | | Available to others | Yos | 8
P | š. | į | . | Yes (limited) | 2 | 2 | Ĭ. | Yes | Ton. | | | Dynamic pressure
(lb/sq ft) | 72 - 1728 | 72 - 880 | 24,5 ~ 1000 | h25 - 12h0 | 167 - 2113 | To 1450 | 385 - 1730 | 800 - 1800 | 60 - 2175 | 70 - 2880 | 450 - 4500 | 5-6 | | Reynolds
no./ft | 2x106 to
9x10 ⁶ | 0.9 - 11.6x10 ⁶ | 2.7 - 4.4x106 | 3.5x106 to
4.6x106 | 2 - 12x10 ⁶ | To 9x106 | 4.6x106 to
9.5x106 | 3.1 - 4.75×10 ⁶ | 1 - 8.7×10 ⁶ | 901791 - 11 | 4.8 - 21.6x10 ⁶ | | | Stagnation
temp. (^D R) | 590 | 530 | 560
(future 630) | 120 above
ambient | 560 | 585 | Ambient | Amblent | 580 | 099 | 520 - 540
Not controllable | | | Stagnation
press. (atmos.) | 1 - 4 | ı | 0.8 - 3.2
(future
0.8 - 15) | 1.37 | ۱
بر | 0,1 - 1,0 | 1 - 2 | H | 0.16 - 2.33 | 1.2 - 7 | 1.7 - 5.0 | | | Running
time | į | В1 смдочп
0 - 60 вес | l | : | 1.5 - 30 sec
normal,
2 min max. | 1 | 30 sec | | : | [5 - h5 sec | 25 ~ 90 asc | | | | and the second | | | | | | |--|--|--|--|--|---|-------------| | Intermittent
or continuous | Intermittent | Intermittent
(blowdown) | Continuous | Continuous | Intermittent | 2 | | Speed range | Mach 0.2 - 1.8
Mach 3.5 | Mach 0.7 - 1.3 | Mach 0.4 - 0.8
Mach 0.8 - 1.2
Mach 1.5 - 2.5
Mach 3 - 3.5
Mach 4 - 7.6 | 0 - Mach 1.2 | 0 - Mach 1.5 | | | Test section:
Dimensions and features | 1x1x3ft
1x1x1ft | 22 in., octagonal,
sliding block 20 x lk in. | 18 x 24 in.
18 x 18 in.
18 x 24 in.
18 x 18 in.
16 x 24 in. | 16 x 16 x 32 in. or
12 x 16 x h3 in. | 12 x 12 x 42 in.; porous walls can be varied from 12 to 46% open area. | | | Use | Research,
devel. | Instruc-
tion,
research | Research,
devel. | Research,
devel. | Research,
devel. | | | Contact | R. W. Bratt Douglas Aircraft Co., Inc. d 87 Lapham Street El Segundo, Calif. | Prof. Joseph Bicknell
Building 17
M.I.T. | Don H. Ross or Seth Briggs
Haval Supersonio
Laboratory
516 Hemortal Drive | Dr. Rudolf Hermann
Rosemount Aeronautioal
Laboratories | Dr. J. D. Lee
AeroVrnanc Laboratory
Don Scott Field
Columbus 10, Ohio | ₹ . | | Owner
Operator | Douglas
Douglas | N.I.T. | H.T.T. | Air Force
Rosemount | Ohio State U.
Ohio State U. | B - 9 | | Name and location | Trisonic 1 Ft funel
Douglas Aerophysics Laboratory
232 East El Segundo Boulevard
El Segundo, California | Wright Brothers Wind Tunnel Facility
Massachusetts Institute of Technology
Cambridge 39, Massachusetts | Superscaic Wind Turnel Neval Supersonic Laboratory Hassachusetts Institute of Technology Cambridge 39, Massachusetts | Transonic Wind Tunnel Rosemount Aeronautical Laboratories University of Minnesota Rosemount, Minnesota | 12 x 12 Inch Transonic Wind Turnel Aerodynamic Laboratory The Ohio State University Columbus 10, Ohio | | | Item | 12 | ភ | Ħ. | ž | 97 | | Hem 27 ĸ 97 7 Ħ Stagnation temperature of 2465°R is now avail-able for Mach 3.5 and can be available for Mach O.4 to 4 by simple modification. Small engines can be operated. Limitations and comments i Available to others X. Tes Yes ĭ. ı Reynolds Dynamic pressure no./ft (1b/sq ft) 1000 - 1750 100 - 3000 680 - 4300 0 - 900 9 - 2 0 - 14.8x106 585 (Mach 0.4-4) 4 - 6.5x106 1200 (Mach 7.6) 0 - 4.9x106 0.3x106 to 0.5x106 5 - 28x106 Stagnation Stagnation press. (atmos.) temp. (OR) Ambient Ambient 8 & 1.2 - 7.5 1.5 - 2.5 5 - 6 .3 Running time 10 - 20 sec 20 - 60 sec ì 880 1 Table II (continued) Ð į | Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous |
------------|--|------------------------|---|-------------------------------|--|-----------------|-------------------------------| | rt | 7 x 10 Ft frameonic Wind Tunnel Aerodynamics Laboratory David Taylor Model Basin Washington 7, D. C. | Вимеря
УГИВ | Technical Director
Aero Laboratory
David Taylor Model Basin | Research,
devel.,
eval. | 7 x 10 x 18 ft | Mach 0.3 - 1.17 | Continuous | | 8 | Transonic Circuit Tunnel
Propulaton Wind Tunnel
Arnold Engineering Development Center
Arnold Air Force Station, Tonnessee | Air Force
And, Inc. | Mr. G. Chester Furlong
AEDC (AEOT) | Devel.,
eval. | 16 x 16 x 40 ft | Mach 0.5 - 1.6 | Continuous | | m | 26-In. Transonic Blowdown Tunnel
Full-Scale Research Division
NASA Langley Research Center
Langley Field, Virginia | NASA
Nasa | MASA Director
NASA Laugley Research
Center | Research,
devel.,
eval. | Octagonal 26 in. between
flats | Mach 0.6 - 1.4 | Intermittent
(blowdown) | | # | Transculc Dynamics Tunnel
Full-Scale Research Division
MASA Langley Research Center
Langley Field, Virginia | NASA
NASA | NASA Director
NASA Langley Research
Center | Research,
devel. | oners cropped corners cropped | Mach 0.1 - 1.2 | Continuous | | w | 16-Ft fransonic Turnel Full-Scale Research Division MASA Langley Research Center Langley Field, Virginia | NASA
NASA | MASA Director
NASA Langley Research
Center | Research, devel. | Octagonal, 15.5 ft across
flats, 22 ft long | Mach 0,2 - 1,3 | Continuous | | • | 8-Ft Transonic Presente Turnel
Full-Scale Research Division
MASA Langley Research Center
Langley Field, Virginia | NASA
NASA | MASA Director
MASA Laugley Research
Center | Research,
devel.,
sval. | 85.5 x 85.5 in, 60 in. long | 0 - Mach 1.2 | Continuous | | ~ | 8-Ft Transonic Tunnel
Full-Scale Research Division
NASA Langley Research Center
Langley Field, Virginia | nisa
Nisa | MASA Director
MASA Laugley Research
Center | Research, devel., eval. | Dodecagonal, 67 in.
across flats, 60 in. long | 0 - Mach 1.265 | Continuous | | 6 0 | 7 x 10 Ft Transonic Wind Tunnel
Full-Scale Research Division
NASA Langley Research Center
Langley Field, Virginia | HASA
HASA | MASA Director
NASA Langley Research
Center | Research | 6.6 x 9.6 ft slotted | 0 - Mach 1.2 | Continuous | | ٥ | li-Ft Transonic Wind Tunnel
NASA Ames Research Center
Mcffett Fleld, California | NASA
WASA | MASA Director
NASA Ames Research Center | Research | 13.5 x 13.5 x 3h ft | Mach 0.6 - 1.2 | Continuous | | 10 | 6 x 6 Ft Supersonic Wind Tunel
NASA Ames Research Center
Hoffett Field, California | HASA | MASA Director
NASA Ames Research Center | Research | 6 x 6 ft sliding block
nozzle | Mach 0.65 - 2.2 | Continuous | | Ħ | 11 x 11 Ft Transonic Turnel
(Unitary Plan Wind Tunnel)
NASA Ames Research Center
Moffett Fleld, California | NASA
NASA | NASA Director
NASA Ames Research Genter | Research,
devel.,
eval. | ll x ll x 22 ft:
all h walls slotted | Mach 0.7 - 1.4 | Continuous | | | - | 1.4 | | - | _ | F . | 5 | TUNNELS Table III | Item | 1 | o. | m | - 4 | ٧٠ | vo | | 80 | ٥. | 10 | n | | |---------------------------------------|-----------------------|---|--------------|--|----------------|--------------------|--------------------|---------------|--------------------|------------|-------------|------| | Limitations and comments | | Can accommodate air-
breathing engines and
rockets. | 1 | ł | 1 | 1 | On stand-by basis. | 1 | On stand-by basis. | ı | 1 | | | Available
to others | Yes | Tos | Ies | <u>Q</u> | Yes | Ies | 9 | Yes (limited) | £ | Yes | Ĭes | | | Dynamic pressure
(lb/sq ft) | 50 - 950 | 6 - 1650 | 625 - 4650 | 6 - 400 (Freen)
6 - 300 (air) | 506 - 15 | 380 - 126 0 | 0 - 880 | 0 - 880 | 425 - 885 | 200 - 1000 | 200 - 2000 | 7. 6 | | Reynolds
no./ft | 1 - 6×10 ⁶ | 5.5x10 ⁴ to
8.3x10 ⁶ | 6 - 25.5x106 | 9x10 ^d to
7x10 ⁶ (Freen)
3.5x10 ^d to
2x10 ⁶ (atr) | 1.2 - 4.15x106 | 1.1 - 5.92106 | 3.6 - 4.4x106 | o - texto | 2.8 - 4.2x106 | 1 - 5×106 | 1 - 10x106 | | | Stagnation
temp. (^o R) | 610 | 029 | Ambient | 610 | 635 | 585 | 099 | 630 | 040 | 580 | 580 | | | Stagnation
press. (atmos.) | 0.38 - 1.6 | 0.019 - 1.9 | 1.5 - 5.1 | 0.01 - 1.0 | н | 0.25 - 2.0 | 1 | | H | 0.3 - 1.0 | 0.25 - 2.25 | | | Running
time | ł | l | 09 Bec | | i | ! | ł | ŧ | I | ł | ł | | | Name and location | | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | |--|---------------------------------------|-------------------|---|-------------------------------|---|--------------------------------|-------------------------------| | 8 x 6 Ft Supersonic Wind Tunnel MASA NASA NA NASA Essearch Center NASA NASA Cleveland 35, Ohio | | 23 | NASA Director
NASA Lewis Research
Center | Research,
devel. | 0 x 6 x 39 ft; upstream half for supersonic: all h sides downstream half perforated for transonic | Mach 0 8 - 2.1 | Continuous | | 10-Ft fransonic Wind Tunnel Wright-Patterson Air Force Base, Ohio LSD Wright-Waterson Air Force Base, Ohio | · · · · · · · · · · · · · · · · · · · | ~3E | F. J. A. Huber
WAFEAK
Wright-Patterson AFB | Devel.,
research | 10 ft diam, slotted walls | Mach 0.4 - 1.2 | Continuous | | Transconic Wind Tunnel Edmund T. Allen Memorial Aeronautical Edmund T. Allen Memorial Aeronautical Edmund T. Allen Month Edmund T. Allen | | 35 58 | John H. Russell
Chief Wind Turnel
Engineer
Dept. 2-5000 Box 50-82
Boeing Alrplane Co. | Research,
devel. | 8 x 12 ft, corner fillets | 0 - Mach 1,3 | Continuou s | | Transculo Wind Tunnel Republic Chi Republic Aviation Corporation Farmingdale, New York Rep | | ₹ 5 × | A. D. Cravero
Chief Wind Tunnel
Engineer (Acting)
Republic Aviation Corp. | Devel.,
evel. | 26 in., octagonal,
area 576 aq in. | 100 mph to
Mach 1.4 | Intermittent | | Polygonic Wind Tunnel Holomell Aircraft Corporation Holomell Aircraft Superation Holomell Holomell Oa St. Ioula 66, Missourt | | 2 6 X | Robert R. Mothert, Chief
Gas Dynamics Laboratory
McDonnell Aircraft Corp. | Devel.,
eval. | franconic: h x h x 9 ft Subsonic and supersonic: h x h x 6 ft | Mach 0,5 - 5 | Intermittent | | El Segundo, California Inc. El Segundo, California Inc. El Segundo, California Inc. El Segundo, California Inc. Inc. Inc. Inc. | | EA SEE | Laboratory Director Los Angeles Division North American Aviation, Inc. International Airport Los Angeles 45, Calif. | Research,
devel., | 7 × 7 × 23 ft | Mach 0,2 - 3,5 | Intermittent | | 8-Ft Transonic Wind Tunnel Cornell Aeronautical Laboratory, Inc. Hu55 Genesee St. Buffalo 21, New York | 5 1 | 4 5 5 7 | John P. Andes, Head
Hypersonic Tunnel Dept.
Gornell Aeronautical
Laboratory, Inc. | Research,
devel | 8 x 8 ft | Mach 1.3 | Gontinuous | | High Speed Wind Tunnel Convair W. Convair Division Convair Ass General Dynamics Corporation Con F. O. San Dick 1950 Gen San Dick 2. California | | X Con | W. T. MecCerthy, Chief Aero Laboratory Convair Division General Dynamics Corp. Mail Zone 61-10 | Research,
devel. | Transonic: 4 x 4 x 6 ft
Supersonic: 4 x 4 x 5 ft | Mach
1.4 - 5
Hach 0.5 - 2 | Intermittent | | High Speed Mind Tunel Yought Aeronautics A Invitation of Chance Vought Aircraft, Inc. Bullas, Texas | | Win Vou | R. G. McMarter, Chief
Wind Tunel Laboratories
Vought Aeronautics | Research,
devel.,
eval. | Research, 4 x h x 6 ft devel | Mach 0,2 - 1,8
Mach 1,2 - 5 | Internation t | | | | | | | | 65 | 2 | | | | | | | | • | | | Rem | 21 | 13 | ñ | 15 | 91 | 11 | 138 | â | 20 | | |---------------------------------------|---|---------------------|---------------------|------------|----------------------------|------------------------|-----------|--------------|--------------------------|----------| | Limitations and comments | Can accommodate air-
breathing engines and
rockets. | On stand-by besis. | ł | ı | ŧ | ł | ı | ţ | I | | | Available
to others | Yes | 9 | o
XX | N
P | Yes | I o | Ĭ
ee | Σ
Φ | ı | | | Dynamic pressure
(lb/sq ft) | 650 - 1240 | 3000 | 0 ⁴⁶ - 0 | 009ħ = 0 | 1500 - 6500 | 200 - 3100 | 50 - 800 | 1000 - 2500 | 900 - 5000 | e)
60 | | Reynolds
no./ft | 4.2 - 4.8x106 | 7.5x10 ⁶ | 901x4 - 0 | 5 - 30x106 | 7.5 - 32.5x10 ⁶ | 2 - 17x10 ⁶ | 1 - 7×106 | 4.5 - 25x106 | 1.6 - 38x10 ⁶ | | | Stagnation
temp. (⁰ R) | 720 | 950 | 009 | Ambient | 810 | 530 | 615 | 0890 | olio | | | Stagnation
press. (atmos.) | 1.06 - 1.73 | 0.25 - 2.0 | н | 1.0 - 1.8 | 1.0 - 27.2 | 8 0
• | 0.1 - 2.5 | 1 - 22.5 | 1.7 - 23.8 | | | Running
time | ł | ; | 1 | 5 - 30 sec | O sec to
min | 0 - 50 sec | 1 | 0 - 150 sec | l | | Table III (continued) | Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | - | |----------|--|---|--|-------------------------------|--|---|-------------------------------|---| | ٦ | Aberdeen Wind Tunnel No. 1 Ballishic Research Laboratories Aberdeen Proving Ground Aberdeen, Maryland | Arny Ordnance
BRL | Robert H. Krieger
Supersonio Wind Tunel
Branch, Exterior
Ballistics Lab., BRL | Research,
devel. | 15 x 13 in, with 30 in.
test rhombus | Aach 1.4 - 5 in
A-Mach increments | Continuous | | | ~ | Aberdeen Wind Tunnel No. 3 Ballistic Research Laboratories Aberdeen Proving Ground Aberdeen, Mayland | Army Ordnance
BRL | Same as above | Research,
devel. | 20 x 15 in., with 36-in.
test rhombus | Mach 1.28 - 4.89
in t-Mach
increments | Continuous | | | m | Supersonic Wind Tunnels Aerodynamics Laboratory David Taylor Hodel Basin Washington 7, D. C. | Вимера
Отна | Technical Director
Aerodynamics Laboratory
David Taylor Model Basin | Research,
devel.,
eval. | Research, 16 x 18 in.
Geval.,
eval. | Mach 0.2 - 2.92 | Intermittent | | | . | Supersonic Wind Tunnel Aerodynamic Test Laboratory U. S. Naval Missile Center Point Mugu, California | Buweps
U. of So. Cal.
Engineering
Center | R. H. Feterson
Lab. Office, Code 5400
U. S. Maral Missile
Genter | Research,
devel.,
eval. | 20.8 x 17 in.
20.8 x 21.8 in. | Mach 1.6 - 6 | Continuous | | | w | Supersonic Tunnel No. 1
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland | Buweps
NOL, White Oak | Dr. R. Kenneth Lobb
Aerodynamics Dept.
NOL, White Oak | Research,
devel.,
eval. | <pre>16 x 16 in., open jet, fixed block nozzles, adjustable diffuser</pre> | Mach 0.2 - 5 | Intermittent | | | 9 | Supersonic Wind Tunnel No. 2
Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland | BuWeps
NOL, White Oak | Same as above | Research,
devel.,
eval. | Same as above | Mach 0.2 - 5 | Continuous | | | 7 | Tunnel E-1
Von Karman Gas Dynamics Facility
Arnold Engineering Development Center
Arnold Air Force Station, Tennesses | Air Force
ARO, Inc. | Mr. G. Chester Furlong
AEDC (AEOT) | Research,
devel. | 12 x 12 in., variable
geometry, flexible nozsle | Mach 1.5 - 5 | Intermitt-nt | | | 60 | 12-Inch Transonic Tunnel (Scarf III)
Sandia Corporation
Sandia Base
Albuquerque, New Mexico | Sandia
Sandia | R. G. Maydew
Supervisor
Experimental Aerodynamics
Div. 7132, Sandia Corp. | Research,
devel. | 12 x 12 x 36 in.,
6% perforated walls | Mach O.l 3 | Intermittant | | | 6 | 20-Inch Variable Mach Number funnel Aero-Physics Division NASA Langley Research Center Langley Fleid, Virginia | nasa
Wasa | NASA Director
NASA Langley Research
Center | Research, devel. | Research, 20 x 20 in.
devel. | Mach 3 – 5 | Intermittent | | | 10 | 20-Inch Variable Supersonic Tunnel
Full-Scale Research Bivision
NASA Langley Research Center
Langley Fleid, Virginia | nasa
Nasa | MASA Director
NASA Langley Research
Center | Research,
devel.,
eval. | 20 x 20 in.
2-dimensional variable
throat | Mach 2 - 5 | Intermittent (blowdown) | | | | | | • | | | • | 2 | _ | TUNNELS | Table IV | Item | ole 1 | ole 2 | <u>n</u> | 3 | ν. | 9 | | & | ۸ | 02 | | |----------|---------------------------------------|--|--|----------------|-----------------------|---------------------------|-----------------------------------|---------------------|--|----------------------|--------------------------|------------| | Ţ | Limitations
and comments | Test section has flexible norsie, variable diffuser, continuus flow, variable density and Mach number. | Test section has flexible nozzle, variable diffuser, variable density and Mach number. Air supplied by 5 centrifugaltype compressors, 13,000 hp. | ł | ı | ŀ | ; | ı | Top and bottom walls of
test section converge or
diverge, Adjustable
ejector flaps provide
plenum chamber suction. | 1 | ı | ALCOHOLD A | | | Available
to others | Yes | 8 | Yes | Mon | Yes | Tos | Yes | Iaa | Yea | Tes | | | | Dynamic pressure
(lb/sq ft) | 35 - 1800 | 75 - 1600 | 0 - 18 | 72 - 1728 | 72 - 880 | 245 - 1000 | 37 - 3600 | 167 - 2113 | 0006 - 006 | 900 - 6200 | 6 | | | Reynolds
no./ft | l - 12x10 ⁶ | 1.5 - 11x10 ⁶ | 2 - 4.8x106 | 2 - 9x10 ⁶ | 0.9 - 4.6x10 ⁶ | 2.7 - h.hx106 | 0.25 to
18.7x106 | 2 - 12x106 | 7 - 7lxx106 | 5.1 - 33x10 ⁶ | | | | Stagnation
temp. (^{OR}) | 590 | 590 | Ambient | 830 - 1150 | 530 | 560
(futura 630) | 510 - 560 | 580 | 1060 | 720 | | | | Stagnation
press. (atmos.) | . 9.5 - 6.6 | | A | 1 - 11 | H | 0.8 - 3.2
(future
0.8 - 15) | 0.055 - 4.0 | 1 - 5 | 3.3 - 33 | 1.5 - 8.1 | | | TUNNELS | Running
time | ľ | I | 25 8 8c | ı | 0 - 60 sec | ţ | 5 min | 15 - 30 sec
normal,
2 min max. | 30 min
(blowdown) | 20 min | | | · Share | | and the same | | - | | | | | | | the second second second second | | | | |---------------|-------------------------|---|---|---|--|--|--|---|---|--|--|---|--|----------------| | Intermittent | or continuous | Intermittent | Continuous | Continuous | Intermittent | Internittent | B | | | Speed range | Mach 3 - 7 | Mach 1.4 - 6.15 | Mach 5.0 | Mach 1.3 - 5
(8 increments) | Mach 1.91 | Haoh 3.05 | Mach 3.96 | Hach 0.4 - 5 | Mach 1.25 - 5.6
(flexible nozale) | Mach 1.51 - 5 | Mach 1.5 - 5.
Fariable contour
plates | Mach 1.5 - & | 10 | | Test section: | Dimensions and features | 24 x 24 in., 54 in. long | 12 in. wide, 18 - 34 in. high | lxlx6ft | l x l x l ft | 1.5 x 1.5 x 3 ft | 1.5 x 1.5 x \ ft | 2 x 2 x h ft | 11, x 11, tn. | 18 x 20 in. | 2 x 2 ft, fixed nossles | 17 x 17 in. square,
supersonic | 15 x 15 in. square | | | _ | Use | Research,
devel.,
eval. | Research | Research | Research | Research | Research | Research | Research, devel. | Research, devel. | Research, devel. | Research,
devel. | Devel.,
eval. | | | | Contact | NASA Director
NASA Langley Research
Center | MASA Director
WASA Ames Research Center | MASA Director
MASA Leuis Research
Center | Same as above | Same as above | Same as above | Same as above | T. G. Reed
NASA Marshall Space
Filght Center | Director
Jet Propulaton Lab. | P. J.
Corooran
ASD-WWP
Wright-Patterson AFB | Deorge D. Dickie, Head
Supersonic Tunnels
United Aircraft Corp.
Research Laboratories | Mr. A. D. Gravero
Chief Wind Tunnel
Engineer (Acting)
Republic Aviation Corp. | 10.01 | | Owner | Operator | NASA
NASA | NASA
NASA | NASA
NASA | NASA
WASA | NASA
NASA | NASA
NASA | NASA
NASA | NASA
NASA | NASA
JPL | Air Force | United Aircraft
United Aircraft | Republic
Republic | _ | | _ | Name and location | 2 x 2 Ft Low Density Hypersonic Tunnel
Full-Scale Research Division
MASA Langley Research Center
Langley Field, Virginia | 1 x 3 Ft Supersonic Wind Tunnel No. 1
NASA Ames Research Center
Moffett Fleid, California | 1 x 1 ft Verieble Reynolds Number
Supersonic Wind Tunnel
MASA Lewis Research Center
Cleveland 35, Ohio | 1 x 1 Ft Variable Mach Number
Wind Tunnel
MASA Lewis Research Center
Cleveland 35, Ohio | 18 x 18 Inch Mach 1.91 Wind Tunnel
NASA Lewis Research Center
Cleveland 35, Ohio | 18 x 18 Inch Mach 3.05 Wind Tunnel
NASA Lewie Research Center
Cleveland 35, Ohio | 2 x 2 Ft Supersonic Mach 3.96 Wind Tunnel
NISA Lewis Research Center
Cleveland 35, Ohio | ly x ly Inch frisonic Wind Tunnel
NASA Marshall Space Flight Center
Hunterille, Alabana | 20-Inch Supersonic Wind Immel Jet Propulaton Laboratory 1,800 Oak Grove Drive Pasadena, California | 2-Ft Supersonic Wind Tunnel
Gas Dynamics Facility
Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio | 17-Inch Blowdown Tunnels
United Aircraft Corporation Research
Laboratories
LOO Hain Street
East Hartford 8, Connecticut | Supersonic Wind Tunel
Republic Aviation Corporation
Famingdale, New Tork | _ | | - | Item | я | 21 | 13 | 7 | 'n | 16 | 17 | 91 | 13 | 8 | ដ | 22 | - - | Table IV (continued) | Item | _ | Q. | | -3 | 10 | vo. | - | ~ | • | | -4 | a . | | |---------------------------------------|----------------------------|--------------|-----------------------|----------------------------|-----------------------|---|--|--|--|----------------------|----------------|-------------------------|------| | Limitations and comments Ite | | <u>n</u> | On stand-by basis. 13 | On stand-by basis. 14 | On stand-by basis. 15 | On stand-by basis. Insecut nitrogen avail. shis to 700 pai for cold jet work. | Same as above; also, 17 H-02 fuel system 0.5 lb/sec at 600 pst | Special test section allows cold rocket base flow testing. | High-pressure air for cold jet testing; may be run open jet for burning rocket models. | - | រ | | | | Available to others | I e | Ĭes | S. | 9 | 2 | 2 | Q. | 9
9 | #
0
1 | E C | X 08 | ž | | | Dynamic pressure
(lb/sq ft) | 15 - 34o | 122 - 3400 | 215 - 670 | 156 - 5150 | 795 | 34.5 | 160 | 70 - 2880 | 6 - 1584 | 15 - 1300 | 1000 - 7500 | 1100 - 5400 | 10-6 | | Reynolds
no./ft | 0.14 - 1.5x10 ⁶ | 0.5 - 12x106 | 2 - 9x106 | 0.5 - 15.6x10 ⁶ | 3.3x10 ⁶ | 1.7x106 | 14106 | 11 - 18x106 | 0.1 - 7.15x10 ⁶ | 70,000 to
7.5x106 | 8.k - 27.6x106 | 10 - 65x10 ⁶ | | | Stagnation
temp. (⁰ R) | 1200 | 069 | 760 | 760 | 099 | 099 | 099 | 099 | 950 | 630 | ı | Ambient | | | Stagnation
press. (atmos.) | 0.25 - 3.7 | 1.3 - 4.0 | 3.9 - 9.5 | 6.7 - 9.5 | 1.0 | 1.0 | 1.0 | 1.2 - 7.0 | 0.15 - 4.5 | 0.02 - 2.5 | 2.8 - 21 | 2 - 40 | | | Running
time | ł | ı | ı | ı | ı | ı | i | 15 - 45 sec | ı | ı | 15 - 90 | ho sec to
3 min | | | - | | وروان المستوال المراجع | | | | | | | |--|---|---|---|---|---|---|---|--------------| | Intermittent
or continuous | Intermittent | Intermittent | Continuous | Intermittent | Intermittent | Continuous | Internal themt | 8 | | Speed range | Mach 1.43, 1.96,
2.97 and 4.0 | Mach 0.2 - 1.8} | Mach 0.4 - 0.8
Mach 0.6 - 1.2
Mach 1.5 - 2.5
Mach 1 - 7.6
Mach 4 - 7.6 | Mach 1.5 - 10 | Mach 5.5 - 10 | 0 - Mach 10 but
hyperthermal in
nature | Mach 2.5 - 4.25 | = | | Test section:
Dimensions and features | 12 x 12 in., with a step
expansion to 15.4 x 12 in. | (1 x 1 x 3 ft
(1 x 1 x 1 ft | 18 x 2l in.
18 x 18 in.
11 x 2l in.
11 x 2l in.
11 x 2l in. | Research, 12 x 12 in
devel. | Research, 12 x 12 in.
devel. | 1 ft diam or less | Research, 12 x 12 in. free jet devel. | | | Use | Research,
devel., | Research,
devel. | Research,
devel. | Research,
devel. | Research,
devel. | Instruc-
tion,
research,
devel. | devel. | | | Contact | W. J. Garder
Gruman Aircraft
Engineering Corp
Bethpage, New York | R. W. Bratt, Chief
Aerophysics Laboratory
Douglas Aircraft Co., Inc.
827 Lapham Street
El Segundo, California | Don H. Ross or Seth Briggs Research,
Naval Supersonic Lab.
560 Memorial Drive
H.I.T. | Karl Stefan
Rosemount Aeronautical
Laboratories | Dr. Rudolf Hermann
Rosemount Aeronautical
Laboratories | Prof. George M. Palmer
School of Aeromautics and
Engineering Sciences
Furdue University | br. J. D. Lee
Aerodynamic Laboratory
Don Scott Field
Columbus 10, Ohio | 11-11 | | Owner
Operator | Grunnan
Grunnan | Douglas
Douglas | H.T.T. | Air Force
Rosemount | Air Force
Rosemount | Purdue
Purdue | Onto State U. Onto State U. | | | Name and location | Supersonic Facility
Grumman Aircraft Engineering Corporation
Bethpage, New York | Trisonic 1-Ft Tunnel
Douglas Asrophysics Laboratory
2332 E. El Segundo Bonlevard
El Segundo, Galifornia | Supersonic Tunnel.
Maval Supersonic Laboratory
Massachusetts Institute of Technology
Cambridge 39, Massachusetts | Tunel No. 2
Rosemount Aeromattical Laboratories
University of Minnesota
Rosemount, Minnesota | Tunel No. 4
Rosemount Aeronautical Laboratories
University of Minnesota
Rosemount, Minnesota | Plasma Jet Hypersonic Hyperthermal Wind
Tunnel. Aero Space Sciences Laboratory
School of Aeronautics and Engineering
Sciences. Purdue University Lafayette, Indiana. | 12 x 12 Inch Supersonic Wind Tunnel Aerodynamics Laboratory The Ohio State University Columbus 10, Ohio | _ | | Item | ຄ | #2
#2 | ž | % | 22 | 28 | 62 | - | | ₴ | | |----------|--| | ä | | | 5 | | | 6 | | | ಲ | | | 2 | | | ٠ | | | 윺 | | | - | | | Item | 23 | 77. | % | % | 27 | 28 | & | | |--------------------------------|---------------|----------------|---|--|--|--------------------|--------------------|-------| | Limitations
and comments | i | | I | ı | ï | 1 | i | | | Available to others | Yes | #
6
8 | į | , | Yes
e | I es | | | | Dynamic pressure
(lb/sq ft) | 2300 - 7770 | 100 - 3000 | 9 ' | 425 - 18,500
(Mach 1.5)
60 - 400
(Mach 7) | 60 - 200
(Hach 7) | 10 - 1000 | 2160 ~ 36,000 | 9 -// | | Reynolds
no./ft | 14.5 - 80x106 | 0 - 14.8x106 | 0.02x106 to
0.06x106 | 1.5 - 20x106
(Mach 2)
0.28 - 3.6x106
(Mach 7)
0.1 - 0.6x106
(Mach 10) | 0.1 - 1.6x10 ⁶
(Hach 7)
0.lt - 3x10 ⁶
(Mach 10) | Not yet
defined | 12 - 70x106 | | | Stagnation
temp. (0R) | 487 | 95 | 70 J300 | To 1400 | 3000 | 10,000 - 12,000 | Anbien t | | | Stagnation
press. (atmos.) | 2.5 - 34 | 1.2 - 7.5 | Hin. h.9 (axcept that for Mach 7.6 it's 293); Max.: Varies from 215 to 980, depending on depending on | To 40.8 | 3.3 - 11 | Vacuum to 30 | . 100 | | | Running
time | 30 - 90 вас | 70 8 00 | ł | 30 aec | 30 - 120 sec | | 20 - 60 sec | | Table V. LARGE SUPERSONIC WIND TU | Intermittent
or continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Intermittent
(blowdown) | Continuous | Continuous | Continuous | Continuous | Ö | |--|--|---|---|---|---|---|--|--|--|--|-------| | Speed range | Mach 1.5 - 5 | Mach 1.5 - li | Mach 1.5 - 6 | Mach 1.25 - 2.2 | Mach 1.5 - 2.8
Mach 2.3 - 4.65 | Nach 3 | Mach 0.65 - 2.2 | Nach 2.4 - 3.5 | Mach 1.5 - 2.5 | Mach 2 - 3.5 | 12 | | Test section:
Dimensions and features | 3 cells: 112 ft diam, nozzles to lb in. 2-15 ft diam,
nozzles to lb in. 32 ft diam, nozzles to lz in. All low-pressure exhaust | 16 x 16 x 40 ft | to x to in., variable
geometry flaxible nozzle | 4.5 ft square | hxhx7 ft
hxhx7 ft | 8.75 x 6 x 10 ft | 6 x 6 ft, sliding block
nozzle; perforated floor
and ceiling | 8 x 7 ft | 9 x 7 ft | 10 x 10 x b0 ft Propulation circuit: Aerodynamic circuit: | | | Use | Research.
devel.,
eval. | Devel.,
eval. | Devel.,
eval. | Research | Research,
devel. | Research | Research | Devel.,
eval. | Devel.,
eval. | Research,
devel. | _ | | | | w | M | | | | ş | į | ter | | | | Contact | J. E. McMichael
Ordnance Jerophysics
Laboratory | Mr. G. Chester Furlong
AEDC (AEOT) | Mr. G. Chester Furlong
AEDC (AEOT) | MASA Director
MASA Langley Research
Center | MASA Director
WASA Langley Research
Center | NASA Director
NASA Langley Research
Center | NASA Director
NASA Ames Research Center | NASA Director
NASA Ames Research Center | MASA Director
MASA Ames Research Center | NASA Directór
NASA Lewis Research
Center | 12-1 | | Owner Operator Contact | Bufeps J. E. McMichael
Convair Ordnance Jerophysics
Laboratory | Air Force Mr. G. Chester Furlon AEO, Inc. AEDC (AEOT) | Air Force Mr. G. Chester Furlon
AEDC (AEOT) | NASA NASA Director
NASA Langley Research
Center | MASA MASA Director
WASA Langlay Research
Center | NASA NASA Director
NASA Langley Research
Center | MASA MASA Director
NASA Ance Research Cen | MASA MASA Director
NASA Ames Research Cen | NASA NASA Director
NASA Ames Research Cen | NASA NASA Directór
NASA NASA Levis Research
Center | 12-4 | | | | | anne e e e e e e e e e e e e e e e e e e | | | | | - | | | W-751 | INNELS | Table V | Rem | ri | 8 | <u> </u> | 4 | 10 | | 9 | - | • | ٥. | 10 | | |---------|---------------------------------------|--|--|---------------|-------------------------|--------------|--------------|----------------|------------|-------------|------------|--|-----------------------| | Tab | Limitations
and comments | | Gan accommodate airbreathing and rocket engines. | ! | i | į | | 1 | i | ł | ı | . Can accommodate operating at rocket engines. | | | | Available
to others | Yes | Tes | ¥6. | že
S | Yes | | Yes | Kes | Yes | ĭes | Isa | - . | | | Dynamic pressure
(lb/sq ft) | Up to 1520 | 3 - 730 | 45 - 1780 | 100 - 2000 | 100 - 3500 | 70 - 1750 | 1230 - 1,950 | 200 - 1000 | 200 - 1000 | 200 - 1550 | 500 - 600 | 20 - 720 /
1.2 - @ | | | Reynolds
no./ft | 0.hx10 ⁶ to
32x10 ⁶ (normal
operation)
with 215 peta
and 300°F
inlet | 2.3x104 to
3.2x10 ⁶ | 0.5 - 8.5x106 | 0.5 - 9x10 ⁶ | 0.3 - 15x106 | 0.3 - 11x106 | 2.7 - 18.5x106 | 1 - 5x106 | 0.5 - 5x106 | 1 x 7×106 | 2.1 - 2.8x106 | 0.2 - 2.6x100 | | | Stagnation
temp. (^O R) | 11460 (1600
1b/sec + 215
psts)
22250 (200
1b/sec + 215
psts)
31460 (200
1b/sec + 315
psts) | 0111 | 760 | 590 | 760 | 160 | 1120 | 580 | 580 | 280 | 1160 | 1160 | | | Stagnation
press. (atmos.) | Up to 32 vacuum equipments available for low-pressure operation | 0.019 - 0.95 | 0.07 - 13.6 | 0.13 - 2.5 | 0.14 - 4 | 0.20 - 10 | 3.4 - 16.6 | 0.3 - 1.0 | 0.15 - 2.0 | 0.15 - 2.0 | 0.62 - 2.36 | 0.1 = 2.30 | | NNELS | Running | I | 1 | ŧ | ł | ŀ | ŀ | 30 - 80 sec | ı | ł | ŀ | ŀ | • | | | | - | | | | | | | | |--|---|---|---|--|--|--|---|--|-------------------| | Intermittent
or continuous | Continuous | Intermittent Ø | | Speed range | Mach 0.8 - 2.1 | Mach 1.2 - 4 | Mach 0.5 - 5 | Mach 0.2 - 3.5 | Mach 0.5 - 2}
Mach 1.4 - 5} | Mach 0.2 - 1.8
Mach 1.2 - 5 | Mach 1.4 - 5 | Mach 1.2 - 5 | | | Test section:
Dimensions and features | 8 x 6 x 39 ft; upstream half for supersonic: all b sides downstream half perforated for transonic | l x l x 5 ft | Supersonic and subsonic: h x h x 6 ft Transonic: h x h x 9 ft | 7×7×23 ft | (Supersonic: h x h x 5 ft
(Transonic: h x h x 9 ft | h x h x 6 ft | d x d x 5 ft | devel. Lx Lx Lx l0 ft devel. | | | Use | Research,
devel. | Research,
devel. | Devel.,
eval. | Research,
devel.,
eval. | Research,
devel. | Research, devel., eval. | Research,
devel. | devel. | | | Contact | NASA Director
NASA Levis Research
Center | John H. Russell, Chief
Wind Tunnal Engineer
Department 2-5000
Box 50-82
Boeing Airplane Co. | Robert R. Bothert, Chief
Gas Dynamics Laboratory
McDonnell Aircraft Corp. | Laboratory Director Los Angeles Division North American Aviation, Infernational Airport Los Angeles 45, Calif. | W. F. MacGarthy, Chief
Aero Laboratories
Convair, Div. of General
Dynamics Corp.
Mail Zone 61-10 | Mr. R. C. McMharter, Chief Research, h x h x 6 Wind Tunnel Laboratories devel., Vought Aeronantics eval. | R. W. Bratt
Douglas Aircraft Co.
827 Lapham Street
El Segundo, California | Mr. B. D. O'Laughlin
Lockheed Aircraft Corp. | es
L | | Owner
Operator | MASA
MASA | Boeing
Boeing | McDonnell
McDonnell | N. A. A.
N. A. A. | Convair
Convair | Vought
Fought | Douglas
Douglas | Lockheed
Lockheed | | | Name and location | # x 6 Ft Supersonic Wind Tunnel NEA Levis Research Center Cleveland 35, Ohio | Supersonic Wind funnel Edamid T. Allen Hemorial Asronantical Laboratory Bosing Airplane Company Seattle, Washington | Polysonic Wind Tunnel Rebonnell Aircraft Corporation P. O. Box 516 St. Louis 66, Missouri | Trisonic Wind Tunnal
North American Aviation, Inc.
El Segundo, Galifornia | High Speed Wind Tunnel
Convair -
Division of General Dynamics Corporation
Pr. 0. Box 1950
San Diego 12, California | High Speed Wind Tunnel
Vought Aeronautics
A Division of Chance Vought Aircraft, Inc.
Box 5507
Dallas 22, Texas | Supersonic 4-Ft Tunnel
Douglas Aircraft Company
3000 Ocean Park Boulevard
Santa Monica, California | Lockheed ht v h Ft Supersonio Wind Tunel
Lockheed Alveratt Corporation
California Bivision
F. O. Box 551
Burbank, California | | | Rem | Ħ | 22 | 2 | a | ži. | · 91 | 11 | g ₁ | under Steam Plane | Table V (continued) | Nem | l <u>.</u> | | _ | | | | | _ | | | |---------------------------------------|--|--------------------------|------------------------------------|------------------------|--------------|--------------|---|----------------|------|------| | = | π | 23 | 3 | 7 | Ħ | 91 | 17 | 18 |
 | | | Limitations
and comments | Can accommodate oper-
ating air-breathing
or rocket engines. | ı | i | ŀ | : | ı | i | ı | | | | Available
to others | Ies | 9 | Ies | į | M
a
a | Yes | Xes . | Yes | | | | Dynamic pressure
(lb/sq ft) | 650 - 1240 | 1200 - 1500 | 1500 - 6500 | 200 x 3100 | 1000 - 2500 | 200 - 5000 | 1000 - 2500 | 1150 - 5000 | | 13.0 | | Reynolds
no./ft | 4.2 - 4.8x106 | 6 - 19.5x10 ⁶ | 7.5x106 to
32.5x10 ⁶ | 2 - 17×10 ⁶ | 4.5 - 25x106 | 1.6 - 38x106 | 6.14210 ⁶ to
31.2210 ⁶ | 301x34 - 301x3 | | | | Stagnation
temp. (^O R) | 720 | 525 | 810 | 530 | 089 | 910 | 099 | 260 - 660 | | | | Stagnation
press. (atmos.) | 1.06 - 1.73 | 1.36 - 8.5 | 1.0 - 27 | 60
: | 1 - 22.5 | 1.7 - 24 | 1.2 - 25 | Jt | | | | Running | i | 5 - 35 вес | lo sec to
2 min | 10 - 50 sec | 20 - 150 sec | 50 - 120 sec | 40 sec | 7 - 100 sec | | | | Item | Name and location | Owner
Operator | Contact | Use | Test section:
Dimensions and features | Speed range | Intermittent
or continuous | |------|--|--------------------------|---|-------------------------------|---|------------------|-------------------------------| | н | Aberdeen Wind Tunnel No. h
Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland | Arry Ordnance
BRL | Robert H. Krieger
Supersonic Wind Tunel
Branch
Exterior Ballistics Lab.
BRL | Research,
devel. | Mach 614,5 in. exit diam
Mach 7.515.6 in. exit diam
Mach 9.218.75 in exit diam
Length50 in., plenum chambor
aurrounding open jet from
axisymmetric nossles | Mach 6, 7.5, 9.2 | Con ti nuous | | cv | Hypersonic Test Facility Asrodynamics Laboratory David Taylor Model Basin Washington 7, D. G. | Bullepa
DTHB | Technical Director
Aerodynamics Laboratory
David Taylor Model Basin | Research,
devel.,
eval. | 13.52 in. diam, circular,
with intersecting cylindrical
port holes for flow visuali-
zation,
axisymmetric
nozzles | Mach 5 - 10 | Intermittent | | m | Expersonic Tunnel No. 8 Maval Ordnance Laboratory White Oak, Silver Spring, Maryland | Buweps
Nou, White Oak | Dr. R. Kenneth Lobb
NOL, White Oak | Research,
devel.,
eval. | 20 x 20 in.,
2-dimensional noszles;
25 in. diam,
3-dimensional noszle | Mach 5 - 8} | Intermittent | | 4 | Tunnel B-2
Von Karman Gas Dynawics Facility
Arnold Enginearing Development Center
Arnold Air Force Station, Tennessee | Air Force | Mr. G. Chester Furlong
AEDC (AEOT) | Research,
devel. | 12 x 12 in. | Mach 5 - 8 | Intermittent | | v | 18-Inch Hypersonic Tunnel (SCARF VI)
Sandia Corporation
Sandia Base, Albuquerque, New Mexico | AEC
Sandle | R. C. Maydew, Supervisor
Experimental Aerodynamics
Division 7132
Sandia Corp. | Research,
devel. | 18 in., 46 in. long,
axisymmetric | Hach ly - 11 | Intermittent | | 9 | 20-Inch Mach 6 Tunnel
Aero-Physics Division
NASA Langley Research Center
Langley Field, Virginia | NASA
NASA | NASA Director
NASA Langley Research
Center | Research,
devel. | 20 x 20.5 in., fixed nozzle | Hach 6 | Intermittent | | - | 22-Inch Mach 8.5 Tunnél
Aero-Physics Division
NASA Langley Research Center
Langley Fleid, Virginia | WASA
WASA | MASA Director
MASA Langley Research
Center | Research,
devel. | 22 in. diam, circular | Mach 8.5 | Intermittent | | ∞ | 22-Inch Hellum funnel
Aero-Physics Division
NASA Langley Research Center
Langley Field, Virginia | NASA
Wasa | MASA Director
NASA Langley Research
Center | Research,
devel. | 22 in. diam, circular | Mach 15 - 25 | Intermittent | | ٥ | Mach 8 Hypersonic Tunnel
Aero-Physics Division
NASA Langley Research Center
Langley Fleid, Virginia | NASA
Wasa | WASA Director
NASA Langley Research
Center | Research,
devel. | 18 in. diam, circular | Mach 8 | Intermittent | | 01 | Mach 6 Low Density Hypersonic Tunnel
Aero-Physics Division
NASA Langley Research Center
Langley Field, Virginia | nasa
Nasa
Nasa | MASA Director
NASA Langley Research
Center | Research,
tevel. | 12 × 14 in. | Mach 6 | Intermittent | | - | _ | · ` ` | 14.0 | _ | _ | 14 | 0 | TUNNELS Table VI | Item | ī | 8 | <u> </u> | <i>a</i> | w | 9 | - | Ф | ^ | ន | | |--------------------------------|------------|--------------|---|----------------|---------------------------|---------------|---------------------------|---|---------------------|--------------------------|-------| | Limitations and comments | 1 | ı | Both test sections may
be operated with open,
half-open or closed jet | configurations | i | ŀ | I | For each 30-second run,
a 3-hour pump-up time. | Under construction. | 1 | | | Available
to others | Yes | •
• | 3 | E E | Tes (limited) | Yos (limited) | Ios (limited) | Yes (limited) | Yes (limited) | Yes (limited) | | | Dynamic pressure
(lb/sq ft) | 115 - 1440 | 0 - 430 | 7000 (Mach 5)
250 (Mach 10) | 1 - 2850 | 25 - 1500 | 690 - 1260 | 900 - 1350 | ŧ | 200 - 1600 | 120 - 1600 | 7.4.0 | | Reynolds
no./ft | 1 - 12x106 | 0.15 - kx106 | 3 - 50к106 | 0.9 - 20.4x106 | 0.08 - 13x10 ⁶ | h - 10.5x106 | 6.3 - 9.5x10 ⁶ | 3 - 20x106
now;
2.5 - 9x106 | 1 - 10x106 | 0.7 - 10x10 ⁶ | | | Stagnation
temp. (0R) | 1960 | 900g | 5000 | 1375 | 3000 | 1060 | 1510 | 540 now;
1060 in 7/62 | 1500 | 1060 | | | Stagnation
press. (atmos.) | 4.6 - 150 | 1 - 10 | 5 - 150 | 2.7 - 67 | 1 - 20 | 20 - 37 | 120 - 200 | 34 - 272 | 20 - 170 | 1 - 40 | | | Running
time | 1 | 1 - 2 min | l min to
several hr | 5 min | 38 - 60 sec | 3 - 30 min | 3 - 30 min | 20 - 40 вес | 3 - 30 min | 3 - 30 min | | | Intermittent
or continuous | Intermittent | Interal ttent | Intermittent | Internittent | Con tí mous | Intermittent | Intermittent
(blowdown) | Internittent
(blowdown) | Measured in
no. of rd | Measured in
no. of rd
(260 per yr) | Continuous | - 60 | |--|--|--|--|--|---|---|---|--|---|--|---|------| | Speed range | To Mach 17 | Mach 13 | Mach 7, 15 | Nach 10.4 | Nach 3 - 7 | Mach 8 | Mach 10, 15, 20, 25 | Mach 8, 15, 20, 26 | To 10,000 fps;
model velocity
to 23,000 fps | To 2,010 fps;
model velocity to
20,000 fps | Mach 7 | 15 | | Test section:
Dimensions and features | 2 ft dien | 12 in. diam; enclosed free
jet with downstream diffuser | Mach 7: 8 in. diam
Mach 15: 24 in. diam | 15 in. diam, axisymmetrical | 24 x 24 x 54 in. | 24 in. diam open jet within
enclosure, 32 in. long | 14 in. dien, 36 in. long | 20 in. diam | 2 ft diam, ho ft long | 17 x 21 in., 24 ft long | 24.25 in. dim, 3 ft long | | | Use | Research,
devel. | Research,
devel.,
eval. | Research | Research,
devel.,
eval. | Research,
devel.,
eval. | Research | Research | Research | Research | Research | Research | | | Contact | MASA Director
MASA Langley Research
Genter | MASA Director
MASA Langley Research
Center | NASA Director
NASA Langley Research
Center | MASA Director
MASA Langley Research
Center | NASA Director
NASA Langley Research
Center | NASA Director
NASA Langley Research
Center | NASA Ames Research Center
NASA Ames Research Center | NASA Ames Research Center | NASA Director
NASA Ames Research Center | MASA Director
NASA Ames Research Center | NASA Director
NASA Lewie Research
Center | A | | Owner
Operator | NASA
NASA | MASA | NASA | HASA | HASA | HASA | NASA
NASA | nasa
basa | NASA
NASĀ | HASA | NASA
NASA | | | Name and location | Hypersonic Aerothermal-Dynandos Facility
Superpressure Leg (Mitrogen)
Aero-Physics Division
MASA Langley Research Center
Langley Field, Virginia | 12-Inch Hypersonic Geramic Heated Tunnel Applied Materials and Physics Division NASA Langley Research Center Langley Fleid, Virginia | Rypersonic Aeroelseticity Turnel (Helium)
Dynamic Louds Division
NASA Langley Research Center
Langley Field, Virginia | 15-Inch Hypersonic Flow Apparatus
Full-Scale Research Division
NASA Langley Research Center
Lengley Field, Virginia | 2 x 2 Ft Low Density Hypersonic Tunnel
Full-Scale Research Division
NASA Langley Research Center
Langley Field, Virginia | 10 Megawatt Arc Tunnel
Structures Research Division
NASA Langley Research Center
Langley Fleid, Virginia | ld-Inch Hellum Morale
MASA Ames Research Center
Moffett Fleld, California | Hypersonic Helium Tunnel
NASA Ames Research Center
Moffett Fleld, California | Prototype Hypersonic Free Flight Facility
NASA Ames Research Center
Moffett Field, California | Supersonic Free-Flight Wind Turnel
NASA Ames Research Center
Moffett Field, California | 2h-Inch-Diameter Mach-7 Wind Tunnel
MASA Lewis Research Center
Cleveland 35, Ohio | | | Item | Ħ. | 21 | a | ส | 놔 | 91 | 11 | 18 | 91 | 50 | rz. | | | (par | Item | я | 77 | . 13 | 큐 | 15 | 16 | 11 | 18 | 19 | 20 | ដ | | |----------------------|--------------------------------|--|---------------|--|---------------------------|----------------------------|----------------------|--|---------------------------------------|---|--|--------------------|--| | Table VI (continued) | Limitations and comments | Characteristics shown
for this facility are
design objectives;
facility is under
construction. | I | Helium tunnel. | ţ | | ; | ı | ı | Will be completed about
Becamber 1961. Gun-
lamohad models fired
counter to airetress. | Oun-launched models fired
counter to airstream. | On stand-by besis. | | | | Available
to others | Yes (limited) | Tos (limited) | Tes | Tes (limited) | res (limited) | Ios (limited) | <u>o</u> | res (limited) | (os (limited) | fes (limited) | o
M | | | | Dynamic pressure
(lb/sq ft) | 13 - 130 | 011 | 100 - 5600
(Mach 7)
100 - 670
(Mach 15) | 70 - 360 | 15 - 340 | 141 - 9.8 | 12 - 3460 | 260 - 1960 | 10,000 to
2,500,000 | 4,000,000 to
5,000,000 | 256 - 555 | 5.51 | | : | Reynolds
no./ft | 90x104
90x104 | 30 - hox103 | 0.5 - 29x106
(Mach 7)
1.3 - 8.8x106
(Mach 15) | 0.5 - 2.5x10 ⁶ | 0.14 - 1.5x10 ⁶ | 0.76 to
15.35x103 | 0.32
- 30x10 ⁶ | 7 - 13x106 | To 60x106 | 0 - 5x10 ⁸ | 1.6 - 9.8x106 | an an Angaraga | | | Stagnation
temp. (OR) | 1,000 | 1100 | Ambient | 1960 | 1200 | To 16,000 | 230 | 610 | 25,000 Btu
per 1b | 1 | 1260 | | | | press. (atmos.) | 100 - 1000 | 017 | 1 - 80
(Mach 7)
12 - 80
(Mach 15) | 20 - 100 | 0.25 - 3.7 | h1 - 640 | 3 - 135 | 24 - 285 | 30 - 3000 | 0.07 - 10.5 | 14 - 32 | | | - | time | 30 s ec | 30 вес | 20 s ec | 10 min | i | 60 sec | Kach min
10 10
15 10
20 10
25 20 | Mach 86c
15 90
20 105
26 120 | ı | ŀ | ı | | | | | | | | | | | - | | | |--|--|--|---|--|---|--|---|---|---|--------| | Intermittent
or continuous | Continuous | Internittent | Intermittent | Con tinuous | Intermittent | Intermittent | Continuous | Intermittent | Internitiont | 13 | | Speed range | Mach 4 - 11.5 | 2500 - 3500 fps | Mach 5 - 7.6 | Mach 6 - 18 | Mach 1.5 - 10 | Mach 5.5 - 10 | 0 - Mach 10, but
hyperthermal in
nature | Mach 6 - 14 | Mach 6
Mach 8
Mach 12 | 16 | | Test section:
Dimensions and features | 21 x 21 in. to 27 in. high,
flexible nozzle | 2 x 2 ft, 2-dimensional | 12 in. diem open jet | 24 in. dian | 12 x 12 in. | 12 x 12 tn. | lftdim orless | 12 in. diem circular, free
jet | 12 in. diam
{2½ in. diam
⟨½ in. diam | _ | | Use | Research, devel. | Research,
devel. | Research,
devel. | Devel. | Research | Research,
devel. | Instruc-
tion,
research,
devel. | Research,
devel. | Research | erete. | | Contact | Director Research, Jet Propulsion Laborstory devel. | Paul J, Corcoran
ASD-MAPP
Wright-Patterson AFB | John H. Russell, Chief
Wind Tunnel Engineer
Dept. 2-5000, Box 50-82
Boeing Airplane Company | Mr. J. Leonard Frace
Fluidyne Engineering Corp. | Karl Stefan
Rosemount Aeromantleal
Laboratories | Dr. Rudolf Hermann
Rosemount Aeronautical
Laboratories | Frof. 6. M. Palmer
School of Aeronautical
Engineering Sciences
Furdue University | Dr. J. D. Lee
Aerodramic Laboratory
Don Scott Field
Columbus 10, Ohio | Dr. Antonio Ferri
Aerodynaties Laboratory
Folyteobnic Institute
of Brooklyn | 16-19 | | Owner | NSAN JPL | ASD Force | Boeing
Boeing | Tuldyne | Air Force
Rosesount | Air Porce
Rosemount | Purdue
Purdue | Onio State
Onio State | Air Force
Brooklyn
Polytechnic, | | | Name and location | 21-Inch Hyperscnie Wind Tunel
Jet Propulaton Laboratory
1800 Oak Grove Drive
Pasadona, Galifornia | Low Density Hypersonic Gasdynswic Facility
Aeronautical Systems Division
Wright-Patterson Air Force Base, Ohio | 12-Inch Hypersonic Wind Tunnel
Edmind P. Allen Memorial Aerodynamics
Laboratory
Bosing Airplane Company
Seattle, Washington | Fluidyne Hypersonic Wind Tunnel
Fluidyne Engineering Corporation
5740 Wayzata Boulevard
Himespolis, Minnesota | Tunel No. 2
Rosemount Aeronautical Laboratories
University of Minnesota
Rosemount, Minnesota | Tunnel No. 4
Rocemount Aeronautical Laboratories
University of Minnesota
Rosemount, Minnesota | Places Jet Hypersonic Hyperthersal Wind
Junel
Aero Space Sciences Laboratory
School of Aeronautical Engineering
Sciences
Purdue University
Lafevette, Indiana | Hypersonic Wind Tunnel Asrodynsmic Laboratory The Ohio State University Columbus 10, Ohio | Hypersonic Mind Tunnal Polytechnic Institute of Brooklyn Aerodynanics Laboratory 527 Atlantic Arenue Freeport, New Tork | | | Item | 22 | 83 | 72 | ъ | % | 23 | 82 | 53 | <u>R</u> | - | | Item | 23 | 33 | 큓 | Х | 92 | 27 | 28 | 53 | 8 | | |--------------------------------|---|---|---|---------------------------------|---|---|--------------|---------------|---------------------|-------| | Limitations
and comments | High-pressure air supply
for cold jet testing. | Baing saddfied to give
higher temporature air
and higher Hach numbers,
and finally to a low-
density are plassa
generator. | ī | Zironia pebble-bed
heater, | I | ı | ŀ | ı | I | | | Available to others | Yes | å | 9 | Yes | 39
0
14 | I Se | X es | Tes (limited) | O
JE | | | Dynamic pressure
(lb/sq ft) | 29 - 1224 | 3.5 - 70 | 1193 - 2988 | 2 - 4600 | 925 - 18,500
(Kach 1.5)
60 - 4,00
(Mach 7) | 60 - 200
(Nach 7) | 10 - 1000 | 30 - 200 | 3 - 1380 | J6. C | | Heynolds
no./ft | 10,000 to
8.8x106 | 0.9x103 to
1x106 | 3.4 - 35x10 ⁶ | 1.5×10³ to
6×10 ⁸ | 1.5 - 20x106
(Mach 2)
0.8 - 3.6x106
(Mach 1)
0.1 - 0.6x106
(Mech 10) | 0.1 - 1.6x106
(Mach 7)
0.4 - 3x105
(Mach 10) | ı | 0.3 - 3x106 | 0.5x105 to
hx106 | | | Stagnation
temp. (OR) | 1810 | 052 | 09111 | 1,500 | To 1140 | 3000 | 10,000 to | 2800 | 2600 | | | press. (atmos.) | 1 - 50 | 0.05 - 1 | 122 | 14 - 140 | To 40.8 | 3.3 - 11 | Vacuum to 30 | 3 - 100 | 2 - 10 | | | time | l | 18 - 80 asc | 1 mtn
(Nach 5);
2.5 mtn
(Nach 7) | 1 | 30 sec | 30 - 120 sea | 1 | 30 - 120 min | 15 - 60 880 | | Table VII. LARGE HYPERSONIC WIND | | - | | | | | | | | | | n manager | | |--|--|---|---|--|---|---|--|---|--|---|---|--| | Intermittent
or continuous | Continuous | Continuous | Continuous | Continuous | Continuous | Intermittent | Intermittent | Intermittent
Intermittent | Intermittent | Intermittent | Intermittent
Intermittent | Measured in no. of rd | | Speed range | Mach 8 | Mach 10 | Mach 12 | Hach 10 |
 Mach 12 | Mach 13 | 8,000 - 20,000 fps
approx. | Mach 10
Mach 20 | 6300 - 7300 fps
approx. | Nach 5, 7, 10, 15 | Mach S
Mach 20 (approx.) | Thow gradient 0 to
2400 fps in nozie,
model velocities
to 23,000 fps | | Test section:
Dimensions and features | 50-in, dism, circular,
axisymetric contoured nossle | 50-in. dism, circular,
axisymmetric contoured nossle | | 31 x 31 in. | | 27 in. diew | h ft diam, cylindrical | 3 ft dlam | 8 ft dien x li ft long | 3.5 ft dien, 90 in. long | Two test sections: [Hass transfer 30 in. diam [Aerodynamic 30 in. diam | f x 5 in. to 60 x 60 in.,
h0 ft long | | E Se | Devel.,
eval. | Devel.,
eval. | | Research,
devel. | | Research,
devel. | Research,
devel. | Rosearch,
devel. | Research | Research | Research | Research | | Contact | urlong | Same as above | | actor
;ley Research | Genter | MASA Director
MASA Langley Research
Genter | MASA Director
NASA Langloy Research
Genter | MASA Director
MASA Langley Research
Center | NASA Director
NASA Langley Research
Center | MASA Director
NASA Ames Research Center | MASA Amos Research Center
NASA Amos Research Center | MASA Darector
NASA Ames Research Center | | Owner | Air Porce | Air Force | | NASA
NASA | | nasa
Nasa | nasa
Nasa | nasa
Nasa | nasa
Nasa | MASA | nasa
Nasa
Nasa | nasa
nasa | | Name and location | 8 % T | Tunnel C
Von Karmen Gas Dynamics Facility | Arnold Engineering Development Center
Arnold Air Force Station, Tempssee | Continuous Flow Hypersonic Tunnel
Aero-Physics Division | NASA Langley Research Center
Langley Field, Virginia | Mach 13 Gerante Heated Tunnel
Aero-Physics Division
NASA Langley Research Center
Langley Field, Virginia | Ryperthernal Leg, Hypersonic Aerothernal-
Dynanics Facility
Care-Physics Division
MASA Langley Research Center
Langley Field, Virginia | Hypersonic Dynamics Leg (Helium), Hypersonic Asrothermal-bynamics Facility Dynamic
Loads Division Dynamic Research Center Lancley Field, Wischele | 8-Ft High Temperature Structures Tunnel
Structures Research Division
NASA Lengley Research Center
Langley Field, Virginia | 3.5 Ft Hypersonic Wind lunel
MASA Asses Research Center
Moffett Field, California | Mass Transfer and Aerodynamics Facility NASA Ames Research Center Moffett Field, California | Athosphore Entry Similator
NASA Ames Research Center
Moffett Field, California | | | Tunnel B
Von Karm
Arnold Ei | Tunnel C | Arnold A | Continue
Aero-Phy | NASA La
Langley | Mach 13
Aero-Phy
NASA Las
Langley | Ryperth
Dynam
Aero-Ph
NASA La
Langley | Hyperso
Hyper
Dynamic
NASA La | 8-Ft H.
Structi
NASA L.
Langle | 3.5 Ft
NASA AB
Morrett | Mass Tr
NASA Ar
Moffett | Atmosph
NASA Am
Moffett | TUNNELS Table VII | | l | | | | | | | | | | | | | | |--------------------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------------|---------------------|----------------------|----------------------|------------------------|--|--|-----------| | Item | 1 | N | | 6 | | -3 | ¥A. | 9 | | ~ | 80 | ٥. | 92 | | | Limitations and comments | : | ı | Under construction. | Under construction. | | Under construction. | Under construction. | Under construction. | | Under construction. | ı | Characteristics shown for
this facility are design
objectives. The facility
is under construction | This unique facility fires models into an air-
stress with a density gradient to simulate | re-entry. | | ble
ers | | سہ | · | | | | | | | | | | | | | Available
to others | I o | Ies | 읔 | Yes | | | ğ | Yes | | To | Ĭes | Yes | Yes | | | Dynamic pressure
(lb/sq ft) | 67 - 520 | ly - 520 | 58 - 245 | 515 - 5H | | 08 | 0.25 - 20 | 50 - 7000 | 006 - 05 | 150 - 1700 | 332 - 2550 | 7 - 790 | 400 - 225,000 | 17-6 | | Reynolds
no./ft | 0.4x106 to
3.3x106 | 0.31106 to
31106 | 0.3x106 to | 0.22x196 to 2.2x106 | 0.322196 to 3.22106 | 0.22106 | 0,1x106 | 0.h3x106 to 58x106 | 1,1x106 to
19x106 | 0.15x106 to
2x106 | 0.0kr196 to
6.9x108 | 1 - 1x10 ⁵ } | 0 - 62x106 | | | Stagnation
temp. (OR) | 1360 | 1960 | 2460 | 1950 | 2700 | 1,500 | Enthalpy
9,000 Btu
per 1b | 1060 | 1060 | 1,500 | 1,260 | Enthalpy:
10,000 Btu
per 1b;
2,000 Btu | 15,000 | | | Stagnation
press. (atmos.) | 6.7 - 53.3 | 11.7 - 160 | 11.7 - 160 | 15 - 150 | 30 - 300 | 70 - 80 | 4 - 100 | 2 - 270 | 15 - 270 | 30 - 267 | 3 - 135 | 6.7 | l - 13 | | | Running | I | ļ | 1 | ł | ı | 760 880 | 2 - 3 min | 10 sec | 10 860 | To 4 min | 1 - h min | 10 min
10 min | About 240 rd
per yr | | | Intermittent
or continuous | Intermittent | Intermittent | Intermittent
(blowdown) | Intermittent | Internal teant | Ø | |--|---|--|---|--|---|------| | Speed range | Mach 6 | Mach 14 | Nach 6 - 15 | Mach 6
Mach 8
Mach 10 | Mach 6 Mach 8 Mach 12 Mach 12 | 81 | | Test section:
Dimensions and features | 36 in. diam, closed-jet type | | Variable up to 7 ft diem at
Mach 15, chrouler | [2] in, diam x 32 in,
25 in, diam x 32 in,
27 in, diam x 32 in, | 12 in. diam | | | Use | Research,
devel. | | Research,
devel.,
eval. | Research,
devel. | Be search | | | Contact | Mr. T. Hinka
Republic Aviation Corp. | | Mr. John P. Andes, Head
Rypersonic Tunnel Dept.
Cornell Aeromautical
Lab., Inc. | R. W. Bratt, Chief
Aerophysics Laboratory
Douglas Aircraft Co.
827 Lapham St.
El Segundo, Calif. | Dr., Antonio Ferri
Polytechnio Institute of
Brooklyn
Aerodynamics Jaboratory | | | Owner
Operator | Republic
Republic | | Cornell/Air Force | Douglas
Douglas | Polytechnie Polytechnie | - 3/ | | Name and location | Pebble-Bed Hypersonic Wind Tunnel Facility
Republic Artakion Corporation | war and frames from the same | Wave Supersonio Hypersonio Tunnel
Cornell Asvonantical Laboratory, Inc.
1455 Genesee Street
Buffalo 21, New York | Hypersonio 2-Ft Tunnel
Aerophysics Laboratory
Douglas Aircraft Company
2332 E. El Segundo Boulevard
El Segundo, California | Hypersonia Mind Tunnals Polytechnic Institute of Brooklyn Astrofynsules Laborskory S7 Atlante Avenue Fresport, New York | | | Hem | я | ······································ | 12 | ជ | ੜੇ | | Table VII (continued) | Item | l = | | 21 | . Et | ਜ | | |--------------------------------|-----------------------|-------------------------|-----------|-----------------------|-------------|------| | Limitations and comments | | | ı | ı | I | • | | Available
to others | 1 | | Tes | 2 | ı | | | Dynamic pressure
(lb/sq ft) | 100 - 1200 | 100 - 1200 | 10 - 3600 | 200 - 700 | 3 - 1380 | 2-3. | | Reynolds
no. /ft | 0.1x106 to
7.5x106 | 0.07x106 to
0.35x106 | laid to | 0.7x106 to
9.8x106 | 0.05x106 to | | | Stagnation
temp. (0R) | 3500 | 3500 | 0006 | 2460 | 2600 | | | Stagnation
press. (atmos.) | 3.4 - 190 | 3.4 - 190 | 20 - 200 | 5 - 150 | or - 2 | | | Running
time | 30 sec | 30 800 | 15 aec | 3.6 ndn | 15 - 60 800 | | ## INDEX OF WIND TUNNELS BY LOCATION | Location | Table | Item | |--|---|--| | Government | | | | Arnold Engineering Development Center
Arnold Air Force Station, Tennessee | VII
V
V
V
V
V
V
V
V | 4
2
7
2, 3
4
1, 2 | | Ballistic Research Laboratories
Aberdeen Proving Ground, Maryland | AI
IA | 1, 2
1 | | David Taylor Model Basin
Washington, D. C. | AI
IA
III | 1, 2
1
3
2 | | Jet Propulsion Laboratory
Pasadena, California | IV
VI | 19
22 | | NASA Ames Research Center
Moffett Field, California | VII
VV
VV
VI
VV
VI
VV
VV
VI
VV
VV
VV
VV | 8, 9, 10
8, 9
9, 10, 11
12
7, 8, 9
17, 18, 19, 20
8, 9, 10 | | NASA Langley Research Center
Langley Field, Virginia | V | 5 | | Aero-Physics Division | VII
VII | 9
6, 7, 8, 9, 10, 11
3, 4, 5 | | Aero-Space Mechanics Division | I | 5, 6 | | Applied Materials and Physics Division | VI | 12 | | Location | Table | Item | |---|---------------------------|---| | NASA Langley Research Center (continued) | | | | Dynamics Loads Division | VII
VII | 6
6 | | Full-Scale Research Division | AI
A
III
II
I | 7
7
3, 4, 5, 6, 7, 8
10, 11
4
14, 15 | | Structures Research Division | AII
A | 6
16
7 | | NASA Lewis Research Center
Cleveland, Ohio | VI
IV
V
V | 11
12
13, 14, 15, 16, 17
10, 11
21 | | NASA Marshall Space Flight Center
Huntsville, Alabama | II
IV | 10
18 | | National Bureau of Standards
Washington, D. C. | I | 3, 4 | | Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland | AI
IA
II | 2, 3
5, 6
3 | | Ordnance Aerophysics Laboratory
Daingerfield, Texas | v | 1 | | Sandia Corporation
Albuquerque, New Mexico | AI
IA
II | 5
8
5 | | U.S. Naval Missile Center
Point Mugu, California | IA
II | 14 | | Wright-Patterson Air Force Base, Ohio | AI
IA
III | 13
20
23 | | Location | Table | Item | |---|------------------|--------------------| | Industrial | | | | Boeing Airplane Company
Seattle, Washington | A
A
III | 14
12
24 | | Convair, Division of General Dynamics
Corp., San Diego, California | I
III
V | 20
19
15 | | Cornell Aeronautical Laboratory, Inc.
Buffalo, New York | AII | 18
12 | | Douglas Aircraft Co.
El Segundo, California | NII
IA
II | 12
24
13 | | Santa Monica, California | V | 17 | | Fluidyne Engineering Corp.
Minneapolis, Minnesota | VI | .25 | | Grumman Aircraft Engineering Corp.
Bethpage, New York | I | 19
23 | | Lockheed Aircraft Corp. Burbank, California | ٧ | 18 | | McDonnell Aircraft Corp.
St. Louis, Missouri | I
V
V | 15, 16
16
13 | | North American Aviation, Inc.
El Segundo, California | I
III
V | 17
17
14 | | Los Angeles, California | I | 18 | | Columbus, Ohio | I | 22 | | Northrop Corp., Norair Division
Hawthorne, California | I | 14 | | Republic Aviation Corp. Farmingdale, New York | AII
IA
III | 15
22
11 | | Location | Table | Item | | | | | | | |--|---------------|--------------------|--|--|--|--|--|--| | United Aircraft Corp. Research
Laboratories, East Hartford, Connecticut | I
II
IV | 12, 13
11
21 | | | | | | | | U. S. Naval Weapons Industrial Reserve
Plant, Dallas, Texas | I | 21 | | | | | | | | Vought Aeronautics, Division of Chance
Vought Aircraft, Inc., Dallas, Texas | V
V | 20
16 | | | | | | | | Academic | | | | | | | | | | Georgia Institute of Technology
Atlanta, Georgia | I | 33 | | | | |
 | | Guggenheim Aeronautical Laboratory
Pasadena, California | I | 23 | | | | | | | | Massachusetts Institute of Technology
Cambridge, Massachusetts | I | 26, 27 | | | | | | | | Naval Supersonic Laboratory | II
IV | 13, 14
25 | | | | | | | | Ohio State University, The Columbus, Ohio | II
IV | 16
29
29 | | | | | | | | Polytechnic Institute of Brooklyn
Freeport, New York | VII
VI | 30
14 | | | | | | | | Princeton University Princeton, New Jersey | I | 36, 37 | | | | | | | | Purdue University
Lafayette, Indiana | AI
A | 28
28 | | | | | | | | Stanford University
Stanford, California | I | 35 | | | | | | | | Texas A&M College
College Station, Texas | I | 29 | | | | | | | | University of Cincinnati
Cincinnati, Ohio | I | 34 | | | | | | | | University of Detroit
Detroit, Michigan | I | 32 | | | | | | | | Location | Table | Item | |---|----------------|------------------------| | University of Kansas
Lawrence, Kansas | I | 2 <u>j</u> t | | University of Maryland
College Park, Maryland | I | 25 | | University of Michigan
Ann Arbor, Michigan | I | 28 | | University of Minnesota, Rosemount
Aeronautical Laboratories
Rosemount, Minnesota | AI
IA
II | 15
26, 27
26, 27 | | University of Washington
Seattle, Washington | Ţ | 30 | | University of Wichita
Wichita, Kansas | I | 31 | ... | • | • | | | |---|---|--|--| ## **ABBREVIATIONS** ## Organizations AEC Atomic Energy Commission AEDC Arnold Engineering Development Center ARPA Advanced Research Projects Agency ASD Aeronautical Systems Division (formerly WADD) BRL Ballistic Research Laboratories BuWeps Bureau of Naval Weapons D/Commerce Department of Commerce DIMB David Taylor Model Basin JPL Jet Propulsion Laboratory M. I.T. Massachusetts Institute of Technology N.A.A. North American Aviation, Inc. NASA National Aeronautics and Space Administration NOL Naval Ordnance Laboratory ODDR&E Office of the Director of Defense Research and Engineering USAF U. S. Air Force USNMC U. S. Naval Missile Center WADD Wright Air Development Division Preceding page blank ## Technical and general admin. administration approx. approximately atmosphere(s) BLC boundary layer control Btu British thermal unit cps cycles per second devel. development diam diameter eval. evaluation F Fahrenheit fps feet per second ft feet/foot hp horsepower hr hour(s) in. inch(es) lb pound(s) max. maximum min minute(s) min. minimum mph miles per hour press. pressure psi pounds per square inch psia pounds per square inch absolute R Remur RANKINE rd round(s) sq square temp temperature vac vacuum V/STOL vertical/short take-off and landing yr year(s)